

June 20, 2023

Mark VanKerkhoff, AIA Director Kane County Development and Community Services Department 719 Batavia Avenue, Building A 4th Floor, Geneva, IL 60134 630-232-3451 <u>vankerkhoffmark@co.kane.il.us</u>

Re: Special Use Permit Application

"Highway 20" Proposed Ground-Mounted Community Solar Farm

Applicant:RPIL Solar 5, LLC c/o Renewable Properties, LLCOwner:Robert G. & Evelyn G. Conro TrustNo. 143W708W U.S. Highway 20Hampshire, IL 60140Attn: Al Conro, (847) 880-1635, gconromilk@aol.com

Subject Property	
Present Zoning:	F (Farming District)
Present Use:	Agricultural
Proposed Use:	Community Solar Project, approx. 25 acres
PIN:	02-30-100-013, 75.7 acres
Address:	43W708 Rte 20, Hampshire, Kane County, IL 60140

Dear Mr. VanKerkhoff and Members of the Zoning Board of Appeals:

RPIL Solar 5, LLC, is requesting an approval for a Special Use Permit to allow for development of an approximately 4.99MW (AC) ground-mounted distributed generation community solar facility ("Project") on an existing farmland parcel of approximately 76 acres at 43W708 Rte 20. The Project intends to develop approximately 25 acres of the identified parcel.

On behalf of Renewable Properties (Developer) and RPIL Solar 5, LLC, owner and operator of the Highway 20 Solar Project, please find the following:

- Special Use Permit Application Packet:
 - Findings of Fact Sheet Map Amendment and/or Special Use
 - List of record owners of all property within 250 feet of the subject property
 - Application for Zoning Map Amendment and/or Special Use
 - Plat of Survey and Site Plan
 - Legal description

Special Use Permit Application June 20, 2023 Page 2 of 18

- Completed Land Use Opinion application sent to the Kane DuPage SWCD
- Stormwater report
- Decommissioning Plan
- Sight Distance Study
- Natural Resources Survey Including Illinois DNR EcoCAT report and USFWS IPaC review
- AIMA application

Special Use Permit Application June 20, 2023 Page 3 of 18

Findings of Fact Sheet -- Map Amendment and/or Special Use

- The Kane County Zoning Board is required to make findings of fact when considering a rezoning. (map amendment)
- You should "make your case" by explaining specifically how your proposed rezoning <u>relates to</u> <u>each of the following factors</u>.
- Special Uses shall be considered at a public hearing before the Zoning Board of Appeals. In its report of findings of facts, recommendations shall be made to the County Board following the public hearing. The Zoning Board will not recommend a special use unless the following items are addressed:
- 25-5-4-9: Commercial Solar Energy Facilities, SPECIAL USE APPLICATION, H. The Special Use application shall contain or be accompanies by the following information: (see attached drawings and supporting documents).

<u>Highway 20 / RPIL Solar 5, LLC</u>	<u>June 16, 2023</u>
Name of Development/Applicant	Date

1. How does your proposed use relate to the existing uses of property within the general area of the property in question?

Community solar fields can be reverted to an agricultural use once decommissioned. There are stacked ecological benefits to the agricultural properties in the general area, such as planting vegetation that can be food sources for pollinators. The deep-rooted native flowers and grasses that will be planted between and around panels after construction, would increase soil health, control soil erosion, improve water quality and retention and carbon sequestration. This also helps implement the resurgence of beneficial insects. All trees and wetlands at the proposed location would be preserved, and the identified screening will help the project blend in with the existing landscape.

2. What are the zoning classifications of properties in the general area of the property in question?

Zoning classifications of properties in the general area are agricultural.

3. How does the suitability of the property in question relate to the uses permitted under the existing zoning classification?

The property in question is relatively flat and contains no ecologically sensitive areas, and therefore is suitable for the proposed activity both now and in the future. Additionally, in accordance with 55 ILC S 5/5-12020, solar has been determined as a compatible use with agricultural and industrial districts.

Special Use Permit Application June 20, 2023 Page 4 of 18

- 4. What is the trend of development, if any, in the general area of the property in question? Development in the general area since 2010 has been limited to agricultural activities and housing subdivisions. The Project's low impact use will not conflict with or intensify current and/or expected land use trends. The Project will not contribute to increased population or generate emissions. It is quietly operated and will provide benefits to the natural environment through its native plantings and landscaping. Once the project is decommissioned, the property would be eligible for redevelopment, continuation of agricultural production, or as otherwise needed to suit the needs of the landowners and area.
- 5. How does the projected use of the property, relate to the Kane County 2040 Land Use Plan? The 2040 Plan Land Use ("Plan") designation of the property is "Resource Management." The purpose of Resource Management is to provide opportunities for the implementation of livable, sustainable and healthy development that respects the character and carrying capacity of the land. As the world continues to pursue greener energy alternatives, solar energy, and specifically solar farms, still remain one of the most effective ways to increase sustainable energy generation. Accordingly, we believe the use of this land and corresponding goals of the project through improving an individual's access to stabilized energy costs and renewable energy is consistent with the Plan's Livability Principles, as well as other goals identified within the 2040 Land Use Plan.
- 6. Explain how the establishment, maintenance or operation of the special use will not be detrimental to or endanger the public health, safety, morals, comfort or general welfare. The Project will comply with numerous state fire safety and electric codes. The State Fire Code directly addresses solar photovoltaic installations, requiring clear labeling, instructions, setbacks, and safety features for projects. No special firefighting equipment is required. Emergency services will have an 24/7 access at the access gate via a knox box. The power generated carries no emissions, and EMF levels at the perimeter of the solar array are generally no higher than natural environment.

Photovoltaic panels, constructed with non-toxic materials, are designed to absorb the sun, not reflect it and the single axis tracking technology moves panels with the sun to maximize efficiency. Reflectivity is no higher than nearby open waters.

The Community Solar concept allows customers to subscribe to a part of a larger, offsite shared solar photovoltaic system and receive benefits for this participation. The concept allows more people access to solar energy such as those who rent or lack the space to install solar on their property. Each month the utility applies credits to the subscriber's bill based on the share of electricity produced by the solar project. The program reduces what the consumer pays to the utility and allows more people to access solar energy. Benefits include:

- Local access to locally sourced renewable electricity;
- Investment to the local distribution grid;
- Construction period jobs and economic investment; and,
- Lower electric bills for subscribers

Special Use Permit Application June 20, 2023 Page 5 of 18

7. Explain how the special use will not be injurious to the use, enjoyment and value of other property in the immediate vicinity.

Proposed vegetative screening would block any views of the proposed development from adjacent non-participating residences. The screening will be located between the required fencing and property line of the participating parcel upon which the facility sits, see attached site plan drawings for further details on screening placement. The screening will consist of a continuous line of native evergreen foliage, native shrubs, and native trees plus existing wooded areas.

Any noise is minimal, primarily generated by the inverters and transformer, which amounts to a low hum audibly detectable only when standing within 50-feet of the device. The sound is not noticeable to neighboring properties. The facility is nonoperational at night and therefore will generate no noise at night.

RPIL Solar 5 LLC respectfully references literature previously submitted to this Board and within adjacent communities, as well as other studies conducted across the State of Illinois and nation which find that solar projects, especially of this size, are not injurious to property values.

8. Explain how the special use will not impede the normal, orderly development and improvement of the surrounding property.

As demonstrated in responses above, the Project will not burden municipal resources as the site will be unoccupied. Accordingly, the increased tax revenue generated from the Project can be reinvested to fully serve the community. It is respectfully submitted that few applicants or other taxpayers can make this same representation. Those resources can be better utilized to support the orderly development and improvement of the community.

Additionally, the deep-rooted native flowers and grasses that will be planted between and around panels after construction would control soil erosion and improve water quality in nearby lakes and soil health on surrounding farmland. These native grasses will mature out to a height of approximately 2.5 feet tall. Also included are clovers, oats, and annual rye grass. The seed mixes proposed are comprised of grasses that are native and/or indigenous to the area and/ or considered favorable for wildlife habitat and sustainable growth.

A drain tile survey will be completed at a future date. Data on the existing drain tile system will be aggregated to create a comprehensive mapping of known and suspected drain tile systems. Landowner coordination and field investigations are ongoing during permitting efforts and the mapping will be updated upon receipt of additional information and prior to construction. RPIL Solar 5, LLC will implement the following drain tile avoidance measures prior to construction:

• Drain tile mains will be considered in the development of the final Project layout and avoided where practicable.

Special Use Permit Application June 20, 2023 Page 6 of 18

- The drain tile dataset will be shown on the final construction plans or on a separate exhibit, as required.
- Identified drain tile mains will be flagged in the field during construction to facilitate avoidance during construction activities.

Even under ideal circumstances, some drain tile damage during construction is unavoidable. The following techniques will be utilized to identify damaged drain tile during construction activities at Highway 20 Solar:

- For excavation associated with the installation of collection lines and foundation slabs, any broken tile system will likely be visible along the boundary of the excavated area.
- In the event drain tile is damaged during pile installation, the location will be assessed for the need for repair.
- It is possible that drain tile damage is not noted immediately upon the event, as damage may become evident over time. Evidence of damage may include unexpected flows of water out of the ground, ponding, or the formation of localized voids in dry conditions. Construction crews will regularly monitor and assess the site for any such conditions. Should conditions indicative of damaged tile be noted, the location will be assessed for the need for repair.

The following protocols will be implemented if broken drain tile is identified:

- Unless otherwise agreed to by the landowner, underground drain tile mains within the footprint of the facility that are damaged from construction will be repaired by a qualified contractor expeditiously as weather and soil conditions allow.
 - Lateral drain tile lines contained within the Project area may not be repaired, as they are subject to landowner agreements that may not necessitate repair. Excavation of laterals may harm the structural integrity of pile driven posts, and thus repair may not be feasible. These lines will be assessed for repair on a caseby-case basis.
 - Landowner agreements that do not necessitate the repair of drain tile shall be applicable only to drain tile lines contained fully on the landowner's property.
 - Drain tile mains that are known to extend outside of the participating landowner property on either the upstream or downstream side, will be repaired, regardless of landowner agreements.
 - If it cannot be determined if a drain tile line extends onto neighboring parcels based on field assessment and/or mapping dataset, the line will be treated as a main line and be subject to repair, regardless of landowner agreements.
- All repairs will be completed by a qualified contractor, and will consist of the following:
 - Any new drain tile lines will be of comparable quality to the original and will be installed to restore the underground drainage capacity found onsite prior to construction.
 - All subsurface drains subject to repair shall be repaired or replaced with materials of equal or higher quality and of equal or larger inside diameter as those which were damaged or removed.

Special Use Permit Application June 20, 2023 Page 7 of 18

- To the greatest extent practicable, the subsurface drain repair shall maintain the original alignment, grading and water flow.
- The locations of all subsurface drains that are damaged and/or repaired will be documented.

9. Will adequate utility, access roads, drainage and other necessary facilities be provided?Please explain:

Four new utility poles are proposed on the property (outside of the ROW) to provide utility AC disconnect, customer recloser, primary meter, and utility recloser. The facility will connect to an existing overhead utility line on US Highway 20. Access will be provided via a new driveway along the property frontage.

The proposed development adds approximately 21,812 square feet of impervious area to the site. In accordance with the Kane County Stormwater Management Ordinance, Category I Best Management Practices (BMPs) are required to be incorporated into the project. The proposed BMPs will provide runoff volume reduction and water quality treatment for one inch of rainfall over the added impervious area. The volume of water reduction and treatment required is approximately 1,818 cubic feet. Permanent Vegetation is proposed to meet the Category I BMP requirements. A native seeding mix that is suitable for site conditions will be selected in accordance with the Practice Standards of the Illinois Urban Manual. Permanent Vegetation (Code 880) will establish a permanent cover to stabilize soils and enhance permeability while reducing runoff and erosion. See attached Stormwater report for more details regarding BMPs. In summary, the Project will be designed in a way which fully meets the needs of the site and will not burden the neighboring properties or community. It is expected that the Project will reduce overall runoff from the site compared to the current site conditions.

10. Will adequate measures be provided for ingress and egress and so designed to minimize the traffic and congestion? Please explain:

There will be no substantial short-term or long-term traffic impacts given the size of this Project. Once built, the facility requires very little ongoing maintenance. Roughly six scheduled visits per year for preventative maintenance, vegetation management, and panel washing (as needed). The access drive will be located at the point of optimum sight distance along the property frontage for safety considerations. Please see the attached Site Distance Study conducted for more information which supports the driveway location is suitable for the safe operation of the Project.

11. Will the special use conform to the regulations of the district in which it is located? Please explain:

Solar utility is listed as an allowed special use in the F District, and will conform to the regulations accordingly.

Special Use Permit Application June 20, 2023 Page 8 of 18

LIST OF RECORD OWNERS WITHIN 250 FEET

Owner	Owner Address	Site Address	Zoning
HOME STATE BANK/NATL ASSOC,	PO BOX 95-8312		
TRUSTEE, TRUST: TR # 5040	HOFFMAN ESTATES, IL,		
FORTY-SEVEN TWENTY PARTNERS, D	60195-8312	43W442 RTE 20	
MILNE		PINGREE GROVE, IL 60140	INC
HOME STATE BANK NATIONAL ASSOC	PO BOX 95-8312		
TRUSTEE	HOFFMAN ESTATES, IL,		
FORTY-SEVEN TWENTY PARTNERS, D	60195-8312	43W368 RTE 20	
MILNE		PINGREE GROVE, IL 60140	INC
	970 S SHORE DR		
OSM PINGREE GROVE LLC	VILLAGE OF LAKEWOOD,		
TIM OPFER	IL, 60014-5531	PINGREE GROVE, IL 60140	INC
	PO BOX 459		
ITASCA BANK & TRUST CO, TRUST: 1983	HAMPSHIRE, IL, 60140-	16N124 ILLINOIS ROUTE 47	
% GLEN NISSEN	0459	HAMPSHIRE, IL 60140	F
CONRO, ROBERT G & EVELYN G	43W708 U S HIGHWAY 20		
TRUSTEES TRUST: 1	HAMPSHIRE, IL, 60140	NA	F
	46W414 PRIMROSE PATH		
	HAMPSHIRE, IL, 60140-		
SCHRAMM, JOHN H & THOMAS C	9426	NA	F
	46W414 PRIMROSE PATH		
	HAMPSHIRE, IL, 60140-	43W916 US HIGHWAY 20	_
SCHRAMM, JOHN H & THOMAS C	9426	HAMPSHIRE, IL 60140	F
	114 PARKSIDE LN		
	BENSENVILLE, IL, 60106-		_
DOMINGUEZ, ROY LEE	2019	NA	F
	1555 N US HIGHWAY 12	43W910 RTE 72 -	5.2
WILSON NURSERIES	VOLO, IL, 60041-8793	HAMPSHIRE, IL	F-2
	104 S WYNSTONE PARK		
	DR		
	NORTH BARRINGTON, IL,		-
CTLTC 008002363650	60010-6967		F
	43W706 RTE 20	43W706 RTE 20	E
CONRO, ALAN L TRUSTEE TRUST: 1	HAMPSHIRE, IL, 60140	HAMPSHIRE, IL 60140	F
CONRO, ROBERT G & EVELYN G	43W708 U S HIGHWAY 20	NA	
TRUSTEES TRUST: 1	HAMPSHIRE, IL, 60140	NA	F
SCHAMBACH, LESLIE R TR# 1&	984 GLENMORE LN		
TIMBERLAND MULCH INC TIMBERLAND MULCH INC	ELGIN, IL, 60124	NA	INC
	33W745 SUNSET DR	43W461 RTE 20	INC
APPLEBERG, ROBERT & DONNA		PINGREE GROVE, IL 60140	INC
AFFLÉDERU, RUDERT & DUINNA	EAST DUNDEE , IL, 60118	FINGREE GROVE, IL 00140	INC

Special Use Permit Application June 20, 2023 Page 9 of 18

If any additional information is needed, I can be reached by phone at 630-370-0017 or by email at gdelrivero@trccompanies.com.

Sincerely,

Go De Rim

Gio Del Rivero Senior Biologist Project Manager – Planning, Permitting, & Licensing

Cc:

Jeremy Price, Renewable Properties, LLC Jim Auld, Renewable Properties, LLC Stephanie Loucas, Renewable Properties, LLC

230 W. Monroe Street, Suite 1840 Chicago, IL 60606

Application for Zoning Map Amendment and/or Special Use

KANE COUNTY DEVELOPMENT DEPARTMENT Zoning Division, Kane County Government Center 719 S. Batavia Avenue Geneva, Illinois 60134 Office (630) 444-1236 Fax: (630) 232-3411

Received Date

APPLICATION FOR ZONING MAP AMENDMENT AND/OR SPECIAL USE

Instructions:

To request a map amendment (rezoning) for a property, complete this application and submit it with all required attachments to the Subdivision and Zoning Division.

When the application is complete, we will begin the review process.

The information you provide must be complete and accurate. If you have a question please call the subdivision and zoning division, and we will be happy to assist you.

1. Property	Parcel Number (s):
Information:	02-30-100-013
	Street Address (or common location if no address is assigned):
	43W708W U.S. Highway 20 Hampshire, IL 60140

2.	Applicant Information:	Name RPIL Solar 5, LLC c/o Renewable Properties, LLC	Phone (978) 382 - 1751
		Address 879 Sanchez Street	Fax
		San Fransisco, CA 94114	Email jprice@renewprop.com

3. Owner of record information:	Name Robert G. & Evelyn G. Conro Trust No. 1 Attn: Al Conro	Phone 847-880-1635
e e	Address 43W708W U.S. Highway 20	Fax
	Hampshire, IL 60140	Email gconromilk@aol.com

Zoning and Use Information:

Current zoning of the property: ____

Current use of the property: _____Agricultural

Proposed zoning of the property:

Proposed use of the property: Community Solar Farm

If the proposed Map Amendment is approved, what improvements or construction is planned? (An accurate site plan may be required)

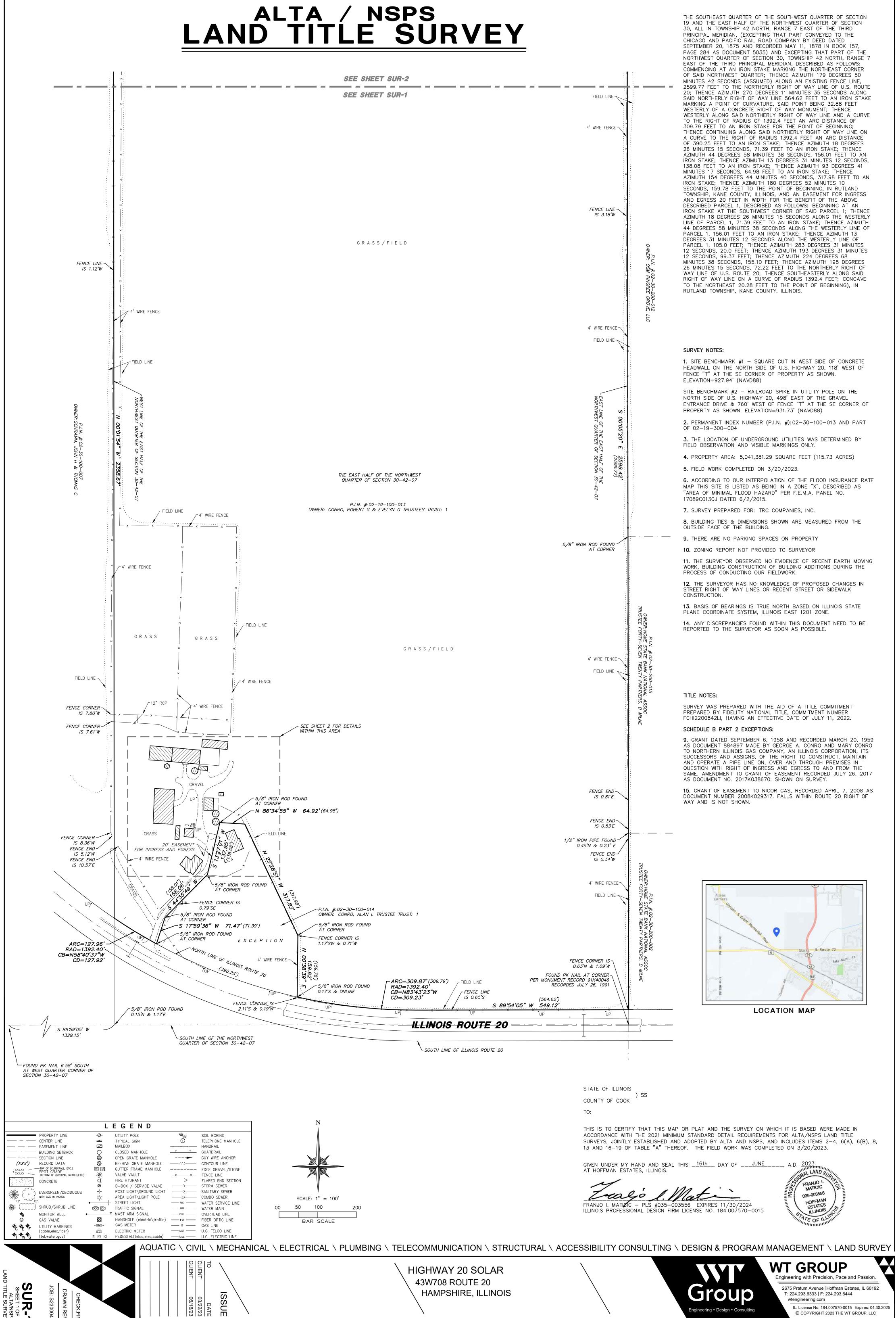
See site plan

Attachment Checklist

- Plat of Survey prepared by an Illinois Registered Land Surveyor.
- **Z** Legal description
- Completed Land Use Opinion (Available in pdf form at <u>www.kanedupageswed.org/luo.pdf</u>), as required by state law, mailed to: The Kane Dupage Soil and Water Conservation District, 545 S. Randall Road, St. Charles, IL 60174.

Endangered Species Consultation Agency Action Report (available in pdf form at <u>http://dnr.illinois.gov/ecopublic/</u>) to be filed with the Illinois Department of Natural Resources.

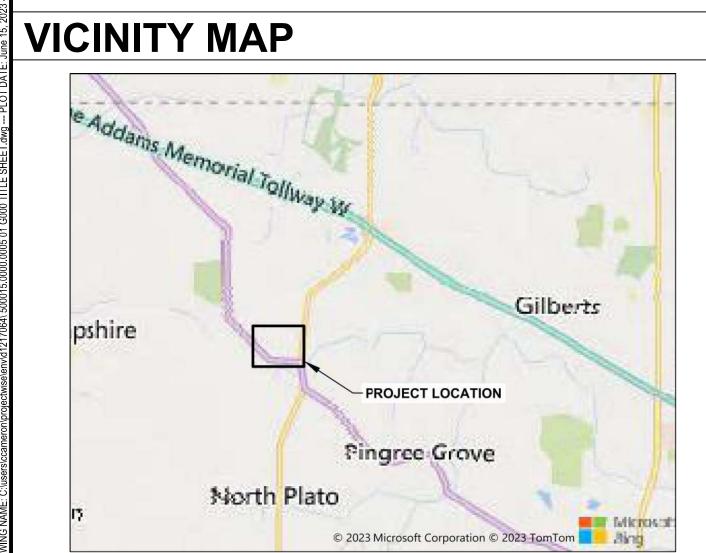
- (* This report may best be accessed with Internet Explorer on some computers, per the State)
- ☑ List of record owners of all property within 250 feet of the subject property
- Trust Disclosure (If applicable)
- ☑ Findings of Fact Sheet
- Application fee (make check payable to Kane County Development Department)


I (we) certify that this application and the documents submitted with it are true and correct to the best of my (our) knowledge and belief.

alon L. Conro	5-19-23	
Record Owner	Date	
Str	June 15, 2023	
Applicant or Authorized Agent	Date	

230 W. Monroe Street, Suite 1840 Chicago, IL 60606

Plat of Survey and Site Plan



PROJECT LOCATION

KANE COUNTY, ILLINOIS

PROJECT SCOPE

THE PROJECT ENTAILS THE INSTALLATION OF A SOLAR PHOTOVOLTAIC SYSTEM IN RUTLAND TOWNSHIP, KANE COUNTY, IL THE INSTALLATION CONSISTS OF NEW GROUND MOUNTED STRUCTURES WITH MOUNTED PHOTOVOLTAICS THE PROJECT SCOPE OF WORK FOR THESE DRAWINGS PERTAINS ONLY TO THE LAND DEVELOPMENT PERMITTING REQUIREMENTS OF KANE COUNTY, ILLINOIS.

SITE INFORMATION

P.I.N.: 02-30-100-013 02-19-300-004

ZONING: F (FARMING DISTRICT)

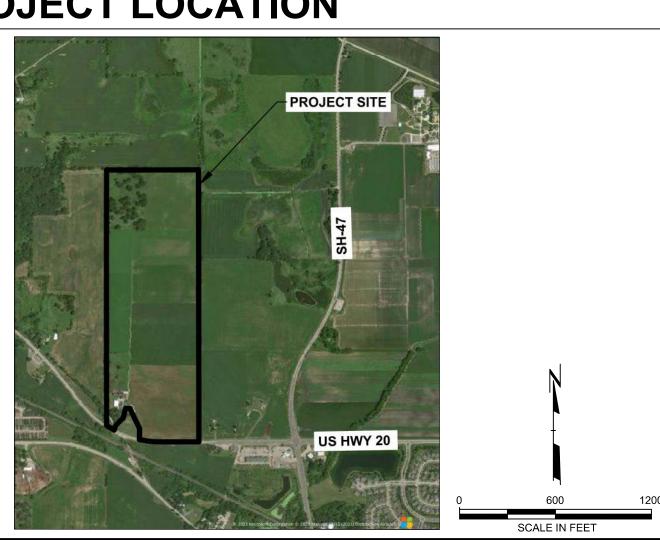
PROJECT OWNER

RPIL SOLAR 5, LLC 879 SANCHEZ STREET SAN FRANCISCO, CA 94114

ENGINEER

TRC ENVIRONMENTAL CORPORATION 230 WEST MONROE STREET **SUITE 1840** CHICAGO, IL 60606

BASIS OF BEARINGS


US FOOT.

BENCHMARK

SITE BENCHMARK #1 - SQUARE CUT IN WEST SIDE OF CONCRETE HEADWALL ON THE NORTH SIDE OF U.S. HIGHWAY 20, 118' WEST OF FENCE "T" AT THE SE CORNER OF PROPERTY AS SHOWN. ELEVATION = 927.94' (NAVD88)

ELEVATION = 931.73' (NAVD88)

PROJECT LOCATION

PERMIT PLAN SET HIGHWAY 20 SOLAR 43W708 RTE 20 HAMPSHIRE, IL 60140 DATE: **JUNE 2023**

AREA: 115.73 ± ACRE GROSS

BASIS OF BEARINGS IS TRUE NORTH BASED ON ILLINOIS STATE PLANE COORDINATE SYSTEM, EAST 1201 ZONE,

SITE BENCHMARK #2 - RAILROAD SPIKE IN UTILITY POLE ON THE NORTH SIDE OF U.S. HIGHWAY 20, 498' EAST OF THE GRAVEL ENTRANCE DRIVE & 760' WEST OF FENCE "T" AT THE SE CORNER OF PROPERTY AS SHOWN.

LEGAL DESCR	IPTION	SF	IEET INDI	EX
QUARTER OF SECTION 30, ALL IN TOWNSHIP 42 NG THAT PART CONVEYED TO THE CHICAGO AND PAG	QUARTER OF SECTION 19 AND THE EAST HALF OF THE NORTHWEST DRTH, RANGE 7 EAST OF THE THIRD PRINCIPAL MERIDIAN, (EXCEPTING CIFIC RAIL ROAD COMPANY BY DEED DATED SEPTEMBER 20, 1875 AND IS DOCUMENT 5035) AND EXCEPTING THAT PART OF THE NORTHWEST	SHEET NUMBER		SHEET TITLE
OLLOWS: COMMENCING AT AN IRON STAKE MAR	RANGE 7 EAST OF THE THIRD PRINCIPAL MERIDIAN, DESCRIBED AS KING THE NORTHEAST CORNER OF SAID NORTHWEST QUARTER; ECONDS (ASSUMED) ALONG AN EXISTING FENCE LINE, 2599.77 FEET TO	G000		TITLE SHEET
HE NORTHERLY RIGHT OF WAY LINE OF U.S. ROU LONG SAID NORTHERLY RIGHT OF WAY LINE 564	ITE 20; THENCE AZIMUTH 270 DEGREES 11 MINUTES 35 SECONDS .62 FEET TO AN IRON STAKE MARKING A POINT OF CURVATURE, SAID	G010	(GENERAL NOTES
ORTHERLY RIGHT OF WAY LINE AND A CURVE TO	TE RIGHT OF WAY MONUMENT; THENCE WESTERLY ALONG SAID THE RIGHT OF RADIUS OF 1392.4 FEET AN ARC DISTANCE OF 309.79 NNING; THENCE CONTINUING ALONG SAID NORTHERLY RIGHT OF WAY	C050	EXI	STING CONDITIONS
NE ON A CURVE TO THE RIGHT OF RADIUS 1392. ZIMUTH 18 DEGREES 26 MINUTES 15 SECONDS, 7	4 FEET AN ARC DISTANCE OF 390.25 FEET TO AN IRON STAKE; THENCE	C100		SITE PLAN
EET TO AN IRON STAKE; THENCE AZIMUTH 93 DE	TAKE; THENCE AZIMUTH 13 DEGREES 31 MINUTES 12 SECONDS, 138.08 GREES 41 MINUTES 17 SECONDS, 64.98 FEET TO AN IRON STAKE; ECONDS, 317.98 FEET TO AN IRON STAKE; THENCE AZIMUTH 180			
EGREES 52 MINUTES 10 SECONDS, 159.78 FEET	TO THE POINT OF BEGINNING, IN RUTLAND TOWNSHIP, KANE COUNTY, GRESS 20 FEET IN WIDTH FOR THE BENEFIT OF THE ABOVE	C501	ACC	ESS ROAD DETAILS
ARCEL 1; THENCE AZIMUTH 18 DEGREES 26 MINU	BEGINNING AT AN IRON STAKE AT THE SOUTHWEST CORNER OF SAID ITES 15 SECONDS ALONG THE WESTERLY LINE OF PARCEL 1, 71.39	C502		PV TRACKERS
ARCEL 1, 156.01 FEET TO AN IRON STAKE; THENC	GREES 58 MINUTES 38 SECONDS ALONG THE WESTERLY LINE OF E AZIMUTH 13 DEGREES 31 MINUTES 12 SECONDS ALONG THE E AZIMUTH 283 DEGREES 31 MINUTES 12 SECONDS, 20,0 FEET; THENCE	C503	EROSI	ON CONTROL DETAILS
ZIMUTH 193 DEGREES 31 MINUTES 12 SECONDS, 55.10 FEET; THENCE AZIMUTH 198 DEGREES 26 M	99.37 FEET; THENCE AZIMUTH 224 DEGREES 68 MINUTES 38 SECONDS, INUTES 15 SECONDS, 72.22 FEET TO THE NORTHERLY RIGHT OF WAY	C504	EQUI	PMENT PAD DETAILS
	ALONG SAID RIGHT OF WAY LINE ON A CURVE OF RADIUS 1392.4 FEET; POINT OF BEGINNING), IN RUTLAND TOWNSHIP, KANE COUNTY,	C505	F	ENCING DETAILS
		C506	С	ULVERT DETAILS
		L100		ANDSCAPE PLAN
		L101		
		L102		DSCAPE DETAILS 2
DI JI EIVI JPEC	FICATIONS (SUBJECT TO CHANGE)			
SYSTEM SPECIFICAT				
SYSTEM SPECIFICAT	IONS	F	SEAL:	
SYSTEM SPECIFICAT SYSTEM SIZE DC SYSTEM SIZE AC	IONS 7006 KW		SEAL:	
SYSTEM SPECIFICAT SYSTEM SIZE DC SYSTEM SIZE AC DC/AC RATIO	IONS 7006 KW 4,999 KW		SEAL:	PROFESSIONAL ENGINEER: ANDREW B. GRAHAM
SYSTEM SPECIFICAT SYSTEM SIZE DC SYSTEM SIZE AC DC/AC RATIO MODULE MANUFACTURER	IONS 7006 KW 4,999 KW 1.401 1.401 ASTRONERGY CHSM72M(DG)/F-BH		SEAL:	ANDREW B. GRAHAM 062048682
SYSTEM SIZE DC SYSTEM SIZE DC SYSTEM SIZE AC DC/AC RATIO MODULE MANUFACTURER MODULE MODEL MODULE RATING	IONS 7006 KW 4,999 KW 1.401 1.401 ASTRONERGY CHSM72M(DG)/F-BH 540 W		SEAL:	ANDREW B. GRAHAM
SYSTEM SIZE DC SYSTEM SIZE DC SYSTEM SIZE AC DC/AC RATIO MODULE MANUFACTURER MODULE MODEL MODULE RATING TOTAL MODULE QTY	IONS 7006 KW 4,999 KW 1.401 ASTRONERGY CHSM72M(DG)/F-BH 540 W 12,974		SEAL:	ANDREW B. GRAHAM 062048682 EXPIRATION DATE: 11/30/23 TRC ENVIRONMENTAL CORP.
SYSTEM SIZE DC SYSTEM SIZE DC SYSTEM SIZE AC DC/AC RATIO MODULE MANUFACTURER MODULE MODEL MODULE RATING TOTAL MODULE QTY MODULES PER STRING	7006 KW 4,999 KW 1.401 ASTRONERGY CHSM72M(DG)/F-BH 540 W 12,974 26		SEAL: ANDREW B. GRAHAM 062.048682 2023.06.15 10:46:53-05'00'	ANDREW B. GRAHAM 062048682 EXPIRATION DATE: 11/30/23
SYSTEM SIZE DC SYSTEM SIZE DC SYSTEM SIZE AC DC/AC RATIO MODULE MANUFACTURER MODULE MODEL MODULE RATING TOTAL MODULE QTY MODULES PER STRING TOTAL NO. OF STRINGS	IONS 7006 KW 4,999 KW 1.401 ASTRONERGY CHSM72M(DG)/F-BH 540 W 12,974 26 499		ANDREW B. GRAHAM 062.048682	ANDREW B. GRAHAM 062048682 EXPIRATION DATE: 11/30/23 TRC ENVIRONMENTAL CORP.
SYSTEM SIZE DC SYSTEM SIZE DC SYSTEM SIZE AC DC/AC RATIO MODULE MANUFACTURER MODULE MODEL MODULE RATING TOTAL MODULE QTY MODULES PER STRING TOTAL NO. OF STRINGS NVERTER MODEL	7006 KW 4,999 KW 1.401 ASTRONERGY CHSM72M(DG)/F-BH 540 W 12,974 26		ANDREW B. GRAHAM 062.048682	ANDREW B. GRAHAM 062048682 EXPIRATION DATE: 11/30/23 TRC ENVIRONMENTAL CORP.
SYSTEM SIZE DC SYSTEM SIZE AC DC/AC RATIO MODULE MANUFACTURER MODULE MODEL MODULE RATING TOTAL MODULE QTY MODULES PER STRING TOTAL NO. OF STRINGS NVERTER MODEL NVERTER RATING	IONS 7006 KW 4,999 KW 4,999 KW 1.401 ASTRONERGY CHSM72M(DG)/F-BH 540 W 540 W 12,974 26 499 SUNGROW SG125HV SUNGROW SG125HV		ANDREW B. GRAHAM 062.048682 2023.06.15 10:46:53-05'00' 2023.06.15 10:46:53-05'00' 1 CC 6/14/2023 ISSUED FOR	ANDREW B. GRAHAM 062048682 EXPIRATION DATE: 11/30/23 TRC ENVIRONMENTAL CORP. DESIGN FIRM LIC. # 18400496-0002
SYSTEM SIZE DC SYSTEM SIZE AC DC/AC RATIO MODULE MANUFACTURER MODULE MODEL MODULE RATING TOTAL MODULE QTY MODULES PER STRING TOTAL NO. OF STRINGS NVERTER MODEL NVERTER RATING NVERTER RATING NVERTER QTY	IONS 7006 KW 4,999 KW 1.401 ASTRONERGY CHSM72M(DG)/F-BH 540 W 12,974 26 499 SUNGROW SG125HV 125 KW		ANDREW B. GRAHAM 062.048682 2023.06.15 10:46:53-05'00' 2023.06.15 10:46:53-05'00' 1 CC 6/14/2023 ISSUED FOR NO. BY DATE	ANDREW B. GRAHAM 062048682 EXPIRATION DATE: 11/30/23 TRC ENVIRONMENTAL CORP. DESIGN FIRM LIC. # 18400496-0002
SYSTEM SIZE DC SYSTEM SIZE AC OC/AC RATIO MODULE MANUFACTURER MODULE MANUFACTURER MODULE MODEL MODULE RATING TOTAL MODULE QTY MODULES PER STRING TOTAL NO. OF STRINGS NVERTER MODEL NVERTER RATING NVERTER QTY STEP-UP TRANSFORMER	IONS 7006 KW 4,999 KW 1.401 1.401 ASTRONERGY CHSM72M(DG)/F-BH 540 W 540 W 12,974 26 499 SUNGROW SG125HV 125 KW 40 40		ANDREW B. GRAHAM 062.048682 2023.06.15 10:46:53-05'00' 2023.06.15 10:46:53-05'00' 1 CC 6/14/2023 ISSUED FOR NO. BY DATE PROJECT:	ANDREW B. GRAHAM 062048682 EXPIRATION DATE: 11/30/23 TRC ENVIRONMENTAL CORP. DESIGN FIRM LIC. # 18400496-0002
SYSTEM SIZE DC SYSTEM SIZE AC DC/AC RATIO MODULE MANUFACTURER MODULE MANUFACTURER MODULE MODEL MODULE RATING TOTAL MODULE QTY MODULES PER STRING TOTAL NO. OF STRINGS NVERTER MODEL NVERTER RATING NVERTER RATING NVERTER QTY STEP-UP TRANSFORMER RACKING	IONS 7006 KW 4,999 KW 1.401 1.401 ASTRONERGY CHSM72M(DG)/F-BH 540 W 540 W 12,974 26 499 SUNGROW SG125HV 125 KW 40 (2) 12.47KV/600V, 2500KVA		ANDREW B. GRAHAM 062.048682 2023.06.15 10:46:53-05'00' 2023.06.15 10:46:53-05'00' 1 CC 6/14/2023 ISSUED FOR NO. BY DATE PROJECT:	ANDREW B. GRAHAM 062048682 EXPIRATION DATE: 11/30/23 TRC ENVIRONMENTAL CORP. DESIGN FIRM LIC. # 18400496-0002
SYSTEM SIZE DC SYSTEM SIZE AC DC/AC RATIO MODULE MANUFACTURER MODULE MODEL MODULE RATING TOTAL MODULE QTY MODULES PER STRING TOTAL NO. OF STRINGS NVERTER MODEL NVERTER RATING NVERTER RATING NVERTER QTY STEP-UP TRANSFORMER RACKING # OF 78 MODULE TRACKERS	IONS 7006 KW 4,999 KW 1.401 ASTRONERGY CHSM72M(DG)/F-BH 540 W 12,974 26 499 SUNGROW SG125HV 125 KW 40 (2) 12.47KV/600V, 2500KVA ATI HSAT		ANDREW B. GRAHAM 062.048682 2023.06.15 10:46:53-05'00' 2023.06.15 10:46:53-05'00' 1 CC 6/14/2023 ISSUED FOR NO. BY DATE PROJECT: RIME K	ANDREW B. GRAHAM 062048682 EXPIRATION DATE: 11/30/23 TRC ENVIRONMENTAL CORP. DESIGN FIRM LIC. # 18400496-0002
SYSTEM SIZE DC SYSTEM SIZE AC DC/AC RATIO MODULE MANUFACTURER MODULE MANUFACTURER MODULE MODEL MODULE RATING TOTAL MODULE QTY MODULES PER STRING TOTAL NO. OF STRINGS NVERTER MODEL NVERTER RATING NVERTER RATING NVERTER QTY STEP-UP TRANSFORMER RACKING # OF 78 MODULE TRACKERS # OF 52 MODULE TRACKERS	IONS 7006 KW 4,999 KW 1.401 1.401 ASTRONERGY CHSM72M(DG)/F-BH 540 W 540 W 12,974 26 499 SUNGROW SG125HV 125 KW 40 (2) 12.47KV/600V, 2500KVA ATI HSAT 125		ANDREW B. GRAHAM 062.048682 2023.06.15 10:46:53-05'00' 2023.06.15 10:46:53-05'00' 1 CC 6/14/2023 ISSUED FOR NO. BY DATE PROJECT: RIME K	ANDREW B. GRAHAM 062048682 EXPIRATION DATE: 11/30/23 TRC ENVIRONMENTAL CORP. DESIGN FIRM LIC. # 18400496-0002 PERMIT ABG REVISION APP' PIL SOLAR 5, LLC SHWAY 20 SOLAR ANE COUNTY, IL TITLE SHEET
SYSTEM SIZE DC SYSTEM SIZE AC DC/AC RATIO MODULE MANUFACTURER MODULE MANUFACTURER MODULE MODEL MODULE RATING TOTAL MODULE QTY MODULES PER STRING TOTAL NO. OF STRINGS NVERTER MODEL NVERTER RATING NVERTER RATING NVERTER QTY STEP-UP TRANSFORMER RACKING # OF 78 MODULE TRACKERS # OF 52 MODULE TRACKERS TILT ANGLE	IONS 7006 KW 4,999 KW 1.401 ASTRONERGY CHSM72M(DG)/F-BH 540 W 12,974 26 499 SUNGROW SG125HV 125 KW 40 (2) 12.47KV/600V, 2500KVA ATI HSAT 125 62		ANDREW B. GRAHAM 062.048682 2023.06.15 10:46:53-05'00' 2023.06.15 10:46:53-05'00' 2023.06.15 10:46:53-05'00' 1 CC 6/14/2023 ISSUED FOR NO. BY DATE PROJECT: RI HIC CC 6/14/2023 ISSUED FOR NO. BY DATE PROJECT: RI HIC CLECKED BY: N. SCH	ANDREW B. GRAHAM 062048682 EXPIRATION DATE: 11/30/23 TRC ENVIRONMENTAL CORP. DESIGN FIRM LIC. # 18400496-0002 PERMIT ABG REVISION APP' PIL SOLAR 5, LLC GHWAY 20 SOLAR ANE COUNTY, IL TITLE SHEET ULTZ PROJ. NO.: 500015.0000.000
SYSTEM SIZE DC SYSTEM SIZE AC DC/AC RATIO MODULE MANUFACTURER MODULE MANUFACTURER MODULE MODEL MODULE RATING TOTAL MODULE QTY MODULES PER STRING TOTAL NO. OF STRINGS NVERTER MODEL NVERTER RATING NVERTER RATING NVERTER QTY STEP-UP TRANSFORMER RACKING # OF 78 MODULE TRACKERS # OF 52 MODULE TRACKERS TILT ANGLE NTER-ROW SPACING	IONS 7006 KW 4,999 KW 1.401 ASTRONERGY CHSM72M(DG)/F-BH 540 W 12,974 26 499 SUNGROW SG125HV 125 KW 40 (2) 12.47KV/600V, 2500KVA ATI HSAT 125 62 52 DEGREES		ANDREW B. GRAHAM OG2.048682 2023.06.15 10:46:53-05'00' 2023.06.15 10:46:53-05'00' 1 CC 6/14/2023 ISSUED FOR NO. BY PROJECT: RI TITLE: N. SCH	ANDREW B. GRAHAM 062048682 EXPIRATION DATE: 11/30/23 TRC ENVIRONMENTAL CORP. DESIGN FIRM LIC. # 18400496-0002 PERMIT ABG PERMIT ABG PERMIT ABG PERMIT ABG PERMIT ABG PERMIT ABG PERMIT ABG NO: 500015.0000.000 HAM HAM G000
SYSTEM SIZE DC SYSTEM SIZE AC DC/AC RATIO MODULE MANUFACTURER MODULE MANUFACTURER MODULE MODEL MODULE RATING TOTAL MODULE QTY MODULES PER STRING TOTAL NO. OF STRINGS INVERTER MODEL INVERTER RATING INVERTER QTY STEP-UP TRANSFORMER RACKING # OF 78 MODULE TRACKERS # OF 52 MODULE TRACKERS TILT ANGLE INTER-ROW SPACING PITCH GCR	IONS 7006 KW 4,999 KW 1.401 ASTRONERGY CHSM72M(DG)/F-BH 540 W 12,974 26 499 SUNGROW SG125HV 125 KW 40 (2) 12.47KV/600V, 2500KVA ATI HSAT 125 62 52 DEGREES 11.2 FEET		ANDREW B. GRAHAM 062.048682 2023.06.15 10:46:53-05'00' 2023.06.15 10:46:53-05'00' 2025.06 10000000000000000000	ANDREW B. GRAHAM 062048682 EXPIRATION DATE: 11/30/23 TRC ENVIRONMENTAL CORP. DESIGN FIRM LIC. # 18400496-0002 PERMIT ABO PERMIT ABO PERMIT ABO PIL SOLAR 5, LLC SHWAY 20 SOLAR ANE COUNTY, IL TITLE SHEET ULTZ PROJ. NO.: 500015.0000.00 MAM MAM G000

NOTES

- 1. THIS PLAN WAS PRODUCED UTILIZING MULTIPLE RESOURCES:
 - AERIAL IMAGERY FROM ESRI.
 - TOPOGRAPHIC DATA WITHIN THE DEVELOPMENT AREA BASED ON GROUND SURVEY BY WT GROUP PERFORMED IN MARCH 2023. TOPOGRAPHIC DATA OUTSIDE OF THE DEVELOPMENT AREA IS BASED ON USGS 1 METER DEM.
 - PROPERTY LINES AND EASEMENTS FROM ALTA SURVEY PERFORMED ON MARCH 2023 BY WT GROUP (2675 PRATUM AVENUE | HOFFMAN ESTATES. IL 60192 - T: 224.293.6333).
 - WETLANDS DELINEATED BY SWCA ENVIRONMENTAL CONSULTANTS ON SEPTEMBER 2022.
- 2. THIS PARCEL (02-19-100-013) IS LISTED AS BEING IN ZONE "X", DESCRIBED AS "AREA OF MINIMAL FLOODING PER F.E.M.A. PANEL NO. 17089C0130J DATED 06/02/15.
- 3. THE LOCATIONS OF PROPOSED IMPROVEMENTS, INCLUDING BUT NOT LIMITED TO: FENCING, SOLAR ARRAY RACKING, INVERTER/TRANSFORMER PADS. OVERHEAD POLES, AND LINES, ETC., SHOWN ARE APPROXIMATE AND ARE SUBJECT TO MODIFICATION DUE TO SITE CONDITIONS, ADDITIONAL PERMITTING REQUIREMENTS, EQUIPMENT SPECIFICATIONS, AND/OR OTHER CONSTRAINTS.
- 4. THE DEVELOPMENT WILL AVOID EASEMENTS. AND PROVIDE THE MINIMUM SETBACKS NOTED FROM EXTERNAL PROPERTY BOUNDARIES AND DESIGNATED NATURAL RESOURCES.
- 5. CONTRACTOR SHALL CALL 811 AT LEAST 72 HOURS PRIOR TO BEGINNING CONSTRUCTION OR EXCAVATION TO HAVE EXISTING UTILITIES LOCATED. ADDITIONALLY, CONTRACTOR SHALL CONTACT ANY LOCAL UTILITIES THAT PROVIDE THEIR OWN LOCATOR SERVICES.

STANDARD SOIL EROSION AND SEDIMENT CONTROL NOTES

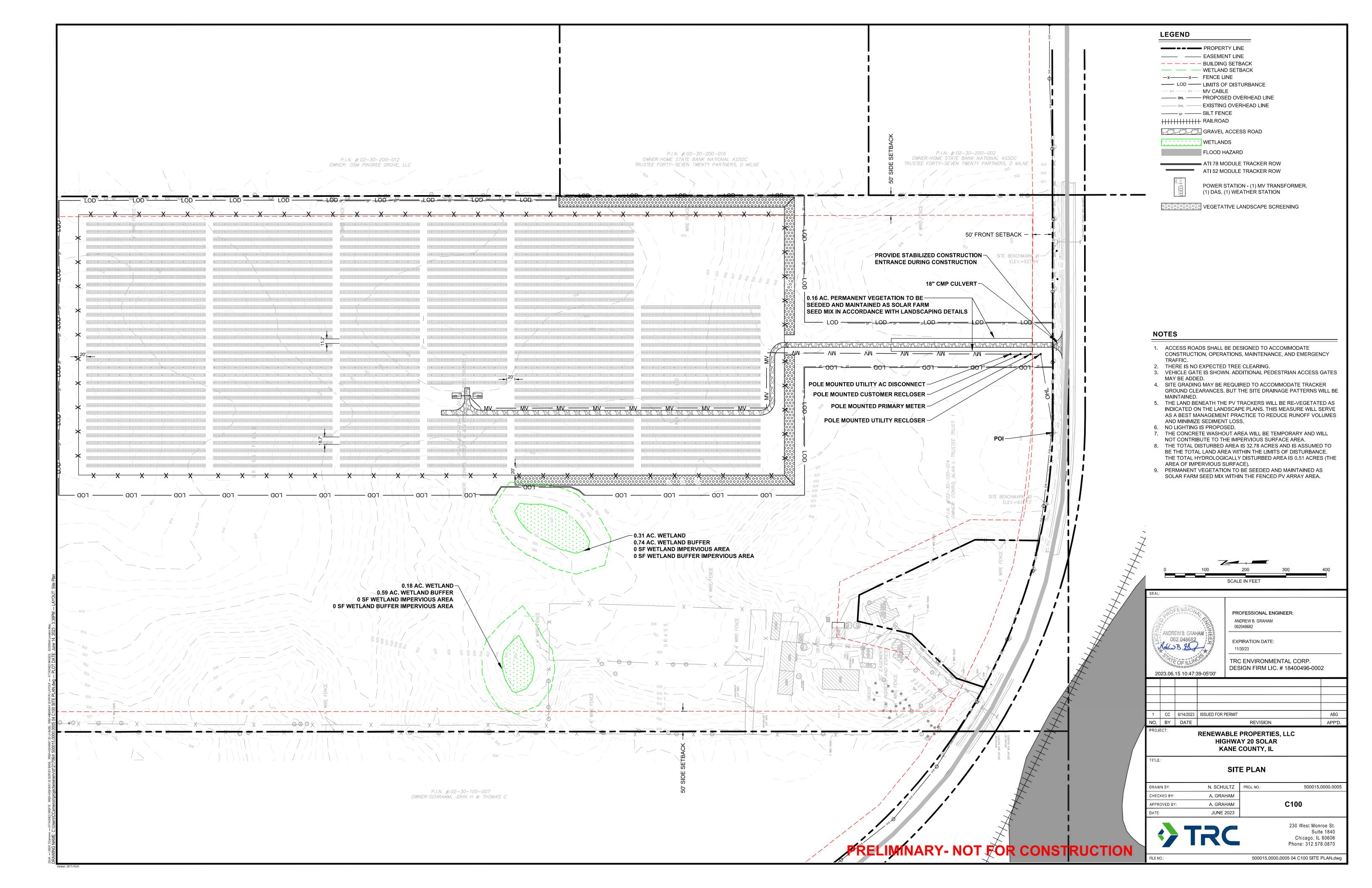
- 1. CONTROL MEASURES SHALL MEET THE MINIMUM STANDARDS AND SPECIFICATIONS OF THE ILLINOIS URBAN MANUAL (WWW.AISWCD.ORG/IUM) UNLESS STATED OTHERWISE
- ALL PLANT MATERIAL SHALL CONFORM TO THE MINIMUM GUIDELINES ESTABLISHED PERMANENTLY STABILIZED. 2. SOIL DISTURBANCE SHALL BE CONDUCTED IN SUCH A MANNER AS TO MINIMIZE EROSION. AREAS OF THE DEVELOPMENT SITE THAT ARE NOT TO BE DISTURBED SHALL 14. STOCKPILED SOIL AND MATERIALS SHALL BE REMOVED FROM FLOOD HAZARD AREAS BY THE AMERICAN STANDARD FOR NURSERY STOCK PUBLISHED BY THE AMERICAN NURSERY AND LANDSCAPE ASSOCIATION. AT THE END OF EACH WORK DAY. SOIL AND MATERIALS STOCKPILED IN IWMC OR BE PROTECTED FROM CONSTRUCTION TRAFFIC OR OTHER DISTURBANCE UNTIL FINAL ANY PROPOSED SUBSTITUTIONS OF PLANT MATERIAL SHALL BE MADE WITH BUFFER AREAS SHALL BE PLACED ON TIMBER MATS, OR AN EQUIVALENT CONTROL STABILIZATION IS ACHIEVED. MEASURE.
- 3. SOIL STABILIZATION MEASURES SHALL CONSIDER THE TIME OF YEAR, DEVELOPMENT SITE CONDITIONS AND THE USE OF TEMPORARY OR PERMANENT MEASURES.
- 4. STABILIZATION BY SEEDING SHALL INCLUDE TOPSOIL PLACEMENT AND FERTILIZATION, AS NECESSARY.
- NATIVE SEED MIXTURES SHALL INCLUDE RAPID-GROWING ANNUAL GRASSES OR SMALL GRAINS TO PROVIDE INITIAL, TEMPORARY SOIL STABILIZATION.
- OFFSITE PROPERTY SHALL BE PROTECTED FROM EROSION AND SEDIMENTATION. VELOCITY DISSIPATION DEVICES SHALL BE PLACED AT CONCENTRATED DISCHARGE LOCATIONS AND ALONG THE LENGTH OF ANY OUTFALL CHANNEL, AS NECESSARY TO PREVENT EROSION.
- **SEQUENCE OF MAJOR CONSTRUCTION ACTIVITIES:** SEDIMENT CONTROL MEASURES SHALL BE INSTALLED PRIOR TO THE DISTURBANCE 7 16. ADEQUATE RECEPTACLES SHALL BE PROVIDED FOR THE DEPOSITING OF ALL OF TRIBUTARY AREAS. CONSTRUCTION MATERIAL DEBRIS GENERATED DURING THE DEVELOPMENT PROCESS. THE APPLICANT SHALL NOT CAUSE OR PERMIT THE DUMPING, DEPOSITING, 1. INSTALL PERIMETER SE/SC MEASURES SUCH AS SILT FENCE AND A STABILIZED 8. STABILIZATION OF DISTURBED AREAS SHALL BE INITIATED IMMEDIATELY WHENEVER DROPPING, THROWING, DISCARDING OR LEAVING OF CONSTRUCTION MATERIAL CONSTRUCTION ENTRANCE. ANY CLEARING, GRADING, EXCAVATING OR OTHER EARTH DISTURBING ACTIVITIES DEBRIS UPON OR INTO ANY DEVELOPMENT SITE, CHANNEL, OR IWMC. THE HAVE PERMANENTLY CEASED ON ANY PORTION OF THE DEVELOPMENT SITE, OR DISTURBED AREAS OF THE SITE WHERE CONSTRUCTION ACTIVITY HAS DEVELOPMENT SITE SHALL BE MAINTAINED FREE OF CONSTRUCTION MATERIAL TEMPORARILY CEASED ON ANY PORTION OF THE DEVELOPMENT SITE AND WILL NOT CEASED FOR MORE THAN 14 DAYS SHALL BE TEMPORARILY SEEDED AND DEBRIS. RESUME FOR A PERIOD EXCEEDING 14 CALENDAR DAYS. STABILIZATION OF WATERED. MAINTENANCE FOR SE/SC MEASURES MUST OCCUR EVERY TWO DISTURBED AREAS SHALL BE INITIATED WITHIN 1 WORKING DAY OF PERMANENT OR 17. THE ENFORCEMENT OFFICER MAY REQUIRE ADDITIONAL OR ALTERNATE SOIL WEEKS AND AFTER EVERY 0.5-INCH OR GREATER RAINFALL EVENT
- TEMPORARY CESSATION OF EARTH DISTURBING ACTIVITIES AND SHALL BE EROSION AND SEDIMENT CONTROL MEASURES, BASED ON DEVELOPMENT SITE INSTALL ASSOCIATED INLET AND OUTLET PROTECTION (IF APPLICABLE). COMPLETED AS SOON AS POSSIBLE, BUT NOT LATER THAN 14 CALENDAR DAYS FROM SPECIFIC CONSIDERATIONS AND THE EFFECTIVENESS OF THE INSTALLED CONTROL TEMPORARILY STABILIZE ALL AREAS INCLUDING LOTS THAT HAVE REACHED THE INITIATION OF STABILIZATION WORK IN AN AREA. EXCEPTIONS TO THESE TIME MEASURES TEMPORARY GRADE. FRAMES ARE SPECIFIED BELOW: 5. INSTALL GRAVEL ACCESS, EQUIPMENT PADS, FENCE LINE, ARRAY SUPPORT a. WHERE THE INITIATION OF STABILIZATION MEASURES IS PRECLUDED BY PILES, AND OTHER MAJOR COMPONENTS. STANDARD DRAIN TILE NOTES SNOW COVER, STABILIZATION MEASURES SHALL BE INITIATED AS SOON AS
 - PRACTICABLE: AND
- b. IN AREAS WHERE CONSTRUCTION ACTIVITY HAS TEMPORARILY CEASED AND WILL RESUME AFTER 14 DAYS, A TEMPORARY STABILIZATION METHOD MAY BE USED.
- ALL ABANDONED DRAIN TILES WITHIN DISTURBED AREAS SHALL BE REMOVED IN THEIR ENTIRETY. DISTURBANCE OF STEEP SLOPES SHALL BE MINIMIZED, AREAS OR EMBANKMENTS DRAIN TILES WITHIN THE DISTURBED AREA OF A DEVELOPMENT SITE SHALL BE HAVING SLOPES STEEPER THAN 3:1 SHALL BE STABILIZED WITH STAKED IN PLACE REPLACED, BYPASSED AROUND THE DEVELOPMENT SITE OR INTERCEPTED AND SOD, EROSION CONTROL BLANKET IN COMBINATION WITH SEEDING, OR AN CONNECTED TO THE STORMWATER MANAGEMENT SYSTEM FOR THE DEVELOPMENT EQUIVALENT CONTROL MEASURE SITE. THE SIZE OF THE REPLACED OR BYPASSED DRAIN TILE SHALL BE EQUIVALENT PERIMETER CONTROL MEASURES SHALL BE PROVIDED DOWNSLOPE AND TO THE EXISTING DRAIN TILE.
- PERPENDICULAR TO THE FLOW OF RUNOFF FROM DISTURBED AREAS, WHERE THE TRIBUTARY AREA IS GREATER THAN 5,000 SQUARE FEET, AND WHERE RUNOFF WILL FLOW IN A SHEET FLOW MANNER. PERIMETER EROSION CONTROL SHALL ALSO BE PROVIDED AT THE BASE OF SOIL STOCKPILES.
- SHOWN IN THE PRELIMINARY NATIVE SEED MIX TABLE, OR APPROVED EQUAL; 11. THE STORMWATER MANAGEMENT SYSTEM SHALL BE PROTECTED FROM EROSION ALL STOCKPILE AREAS SHALL BE LOCATED WITHIN LIMIT OF WORK LINE AND AND SEDIMENTATION DOWNSLOPE FROM DISTURBED AREAS. INLET PROTECTION THAT REDUCES SEDIMENT LOADING, WHILE ALLOWING RUNOFF TO ENTER THE INLET STABILIZED TO PREVENT EROSION. SHALL BE REQUIRED FOR ALL STORM SEWERS. CHECK DAMS, OR AN EQUIVALENT ALL DEBRIS GENERATED DURING SITE PREPARATION ACTIVITIES SHALL BE LEGALLY CONTROL MEASURE, SHALL BE REQUIRED FOR ALL CHANNELS. FILTER FABRIC INLET DISPOSED OF OFF-SITE. PROTECTION AND STRAW BALE DITCH CHECKS ARE NOT ACCEPTABLE CONTROL PROVIDE CRIBBING AS NECESSARY TO PROTECT EXISTING UTILITY LINES DURING MEASURES. CONSTRUCTION.
- 12. IF DEWATERING SERVICES ARE USED, DISCHARGES SHALL BE ROUTED THROUGH AN PLANTING SEED SHALL BE SOWN IN SEASONAL CONDITIONS AS APPROPRIATE FOR EFFECTIVE SEDIMENT CONTROL MEASURE (E.G., SEDIMENT TRAP OR AN EQUIVALENT GOOD SEED SURVIVAL, OR AT SUCH TIMES AS APPROVED BY THE OWNER. CONTROL MEASURE). THE ENFORCEMENT OFFICER SHALL BE NOTIFIED PRIOR TO PROTECT NEWLY TOPSOILED, GRADED AND/OR SEEDED AREAS FROM TRAFFIC AND THE COMMENCEMENT OF DEWATERING ACTIVITIES

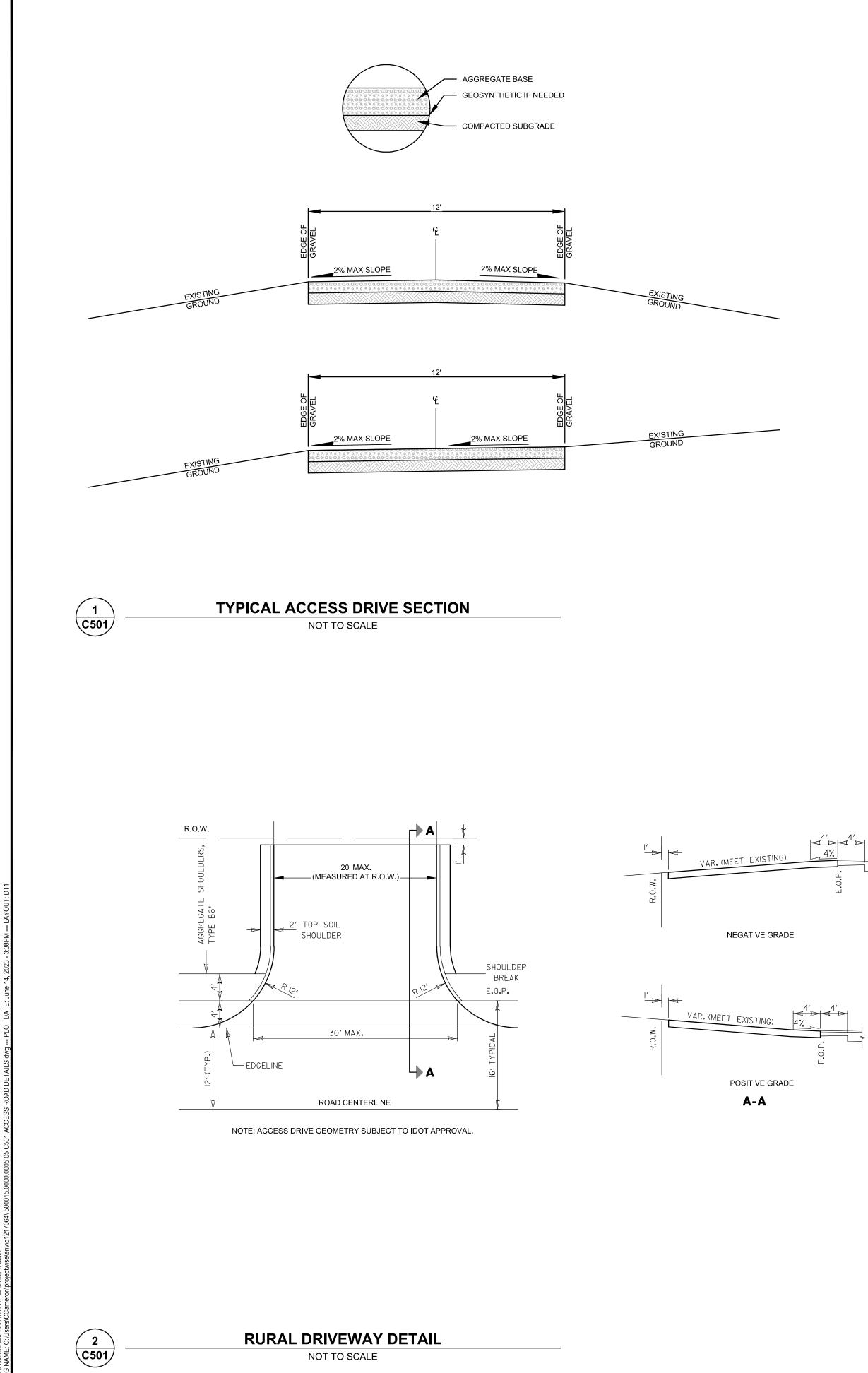
- 13. ALL TEMPORARY SOIL EROSION AND SEDIMENT CONTROL MEASURES SHALL BE REMOVED WITHIN 30 DAYS AFTER FINAL STABILIZATION OF THE DEVELOPMENT SITE IS ACHIEVED OR AFTER THE TEMPORARY MEASURES ARE NO LONGER NECESSARY. TRAPPED SEDIMENT SHALL BE REMOVED AND DISTURBED AREAS SHALL BE
- 15. EFFECTIVE CONTROL MEASURES SHALL BE UTILIZED TO MINIMIZE THE DISCHARGE OF POLLUTANTS FROM THE DEVELOPMENT SITE. AT A MINIMUM, CONTROL MEASURES SHALL BE IMPLEMENTED IN ORDER TO:
 - a. MINIMIZE THE DISCHARGE OF POLLUTANTS FROM EQUIPMENT AND VEHICLE WASHING, WHEEL WASH WATER, AND OTHER WASH WATER; AND
 - b. MINIMIZE THE EXPOSURE OF BUILDING MATERIALS, BUILDING PRODUCTS, CONSTRUCTION WASTES, TRASH, LANDSCAPE MATERIALS, FERTILIZERS, PESTICIDES, HERBICIDES, DETERGENTS, VEHICLE FLUIDS, SANITARY WASTE, AND OTHER MATERIALS PRESENT ON THE DEVELOPMENT SITE TO PRECIPITATION AND TO STORMWATER.

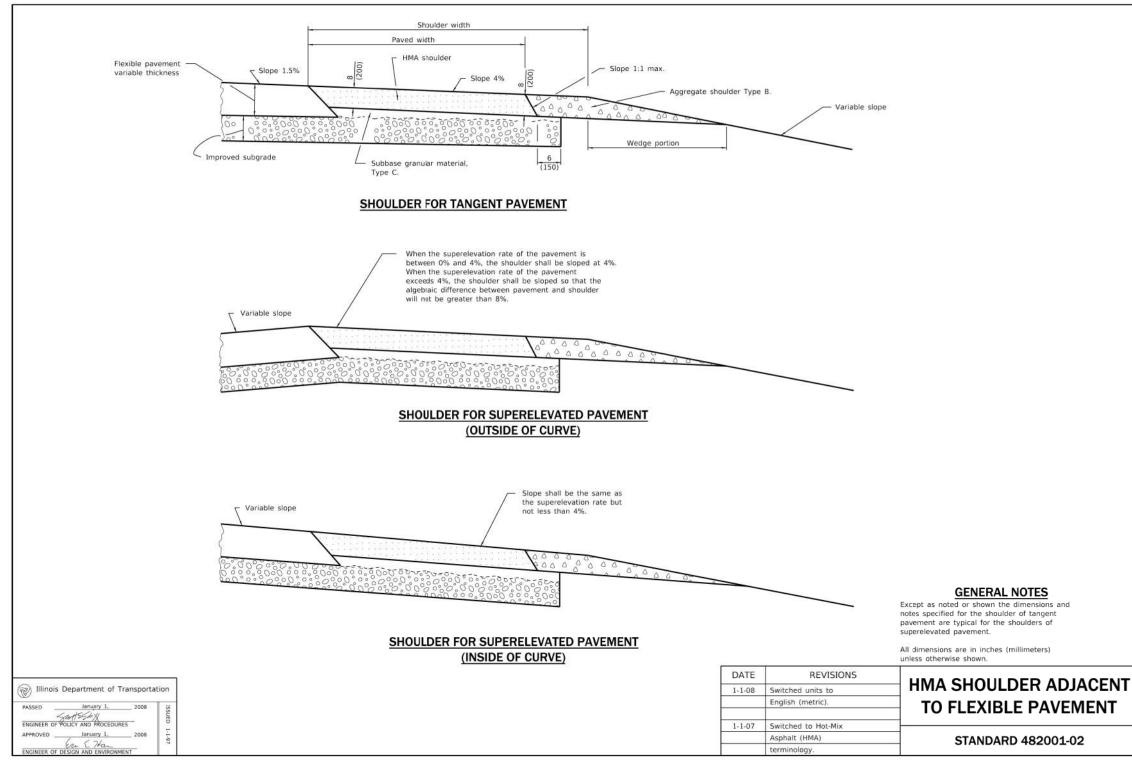
DRAIN TILES DISTURBED DURING REGULATED DEVELOPMENT SHALL BE RECONNECTED BY THOSE RESPONSIBLE FOR THEIR DISTURBANCE, UNLESS THE DEVELOPMENT PLANS SPECIFY ABANDONMENT OF THE DRAIN TILES.

PLANTING NOTES :

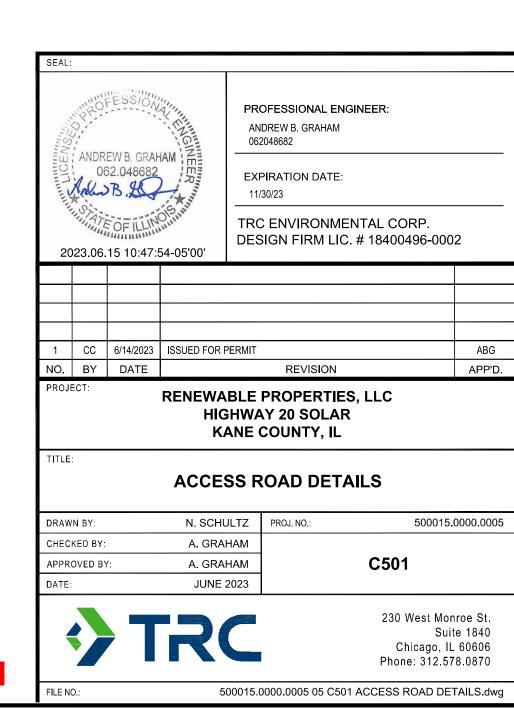
SEED ALL DISTURBED AREAS INCLUDING LAYDOWN AREAS, USING THE SEED MIX

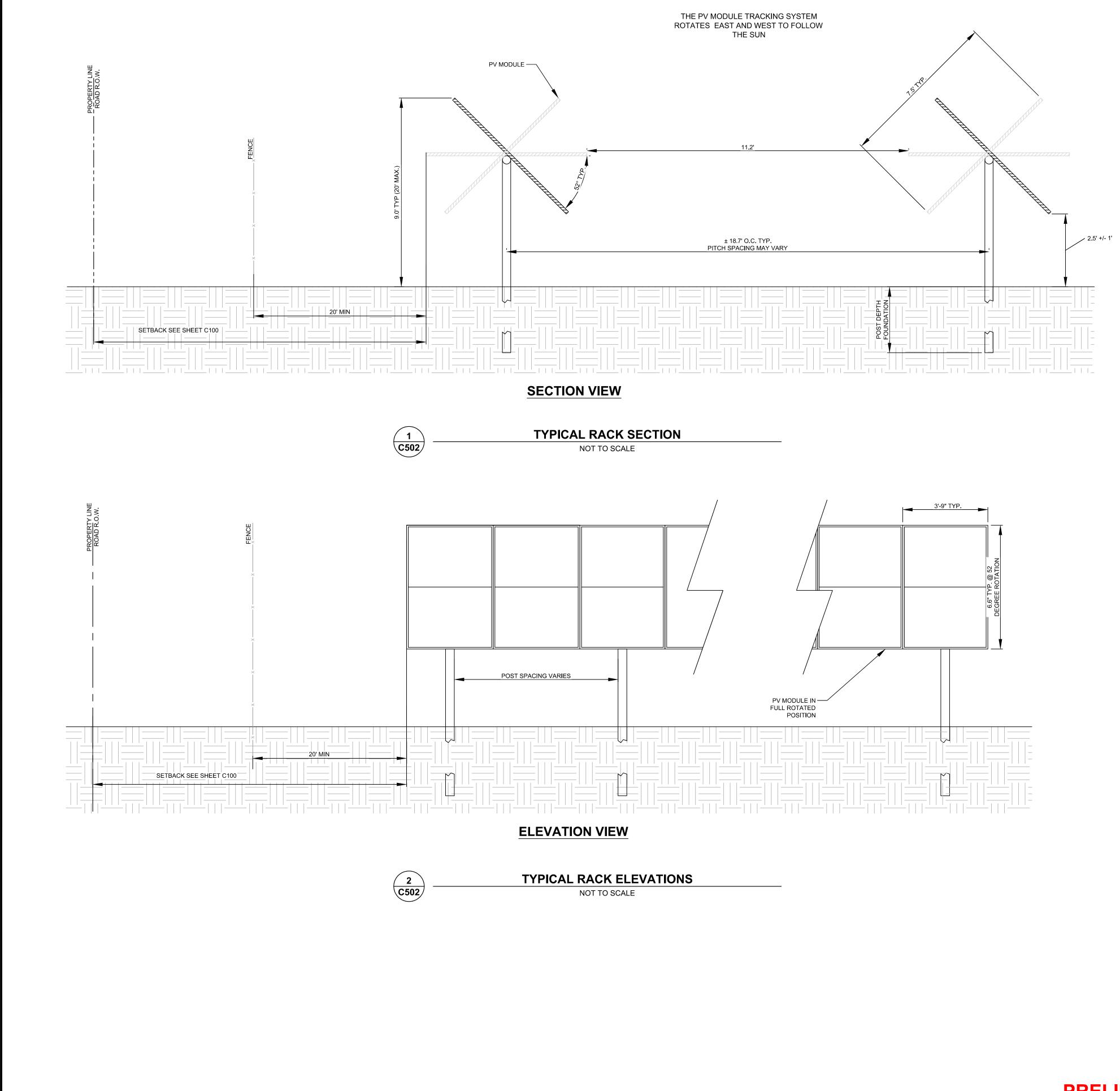

EROSION. KEEP AREAS FREE OF TRASH AND DEBRIS RESULTING FROM LANDSCAPE CONTRACTOR OPERATIONS.


- REPAIR AND RE-ESTABLISH GRADES IN SETTLED, ERODED AND RUTTED AREAS TO THE SPECIFIED GRADE AND TOLERANCES.
- MATERIAL EQUIVALENT TO THE DESIRED MATERIAL IN OVERALL FORM, HEIGHT, BRANCHING HABIT, FLOWER, LEAF, COLOR, FRUIT AND CULTURE. PROPOSED SUBSTITUTIONS WILL ONLY BE CONSIDERED IF SUBMITTED WITH ENUMERATED REASONS WHY SUBSTITUTIONS ARE PROPOSED.
- 10. CAUTION SHALL BE USED NOT TO EXTEND MULCH LAYER ABOVE SOIL LEVEL AT TRUNKS/STEMS OF INSTALLED PLANT MATERIAL.
- 11. ALL PLANT MATERIALS SHALL BE GUARANTEED FOR ONE YEAR FOLLOWING DATE OF FINAL ACCEPTANCE.
- 12. THE LANDSCAPE CONTRACTOR SHALL CLEAN UP AND REMOVE ANY DEBRIS FROM THE SITE CAUSED BY THE LANDSCAPE CONTRACTOR.

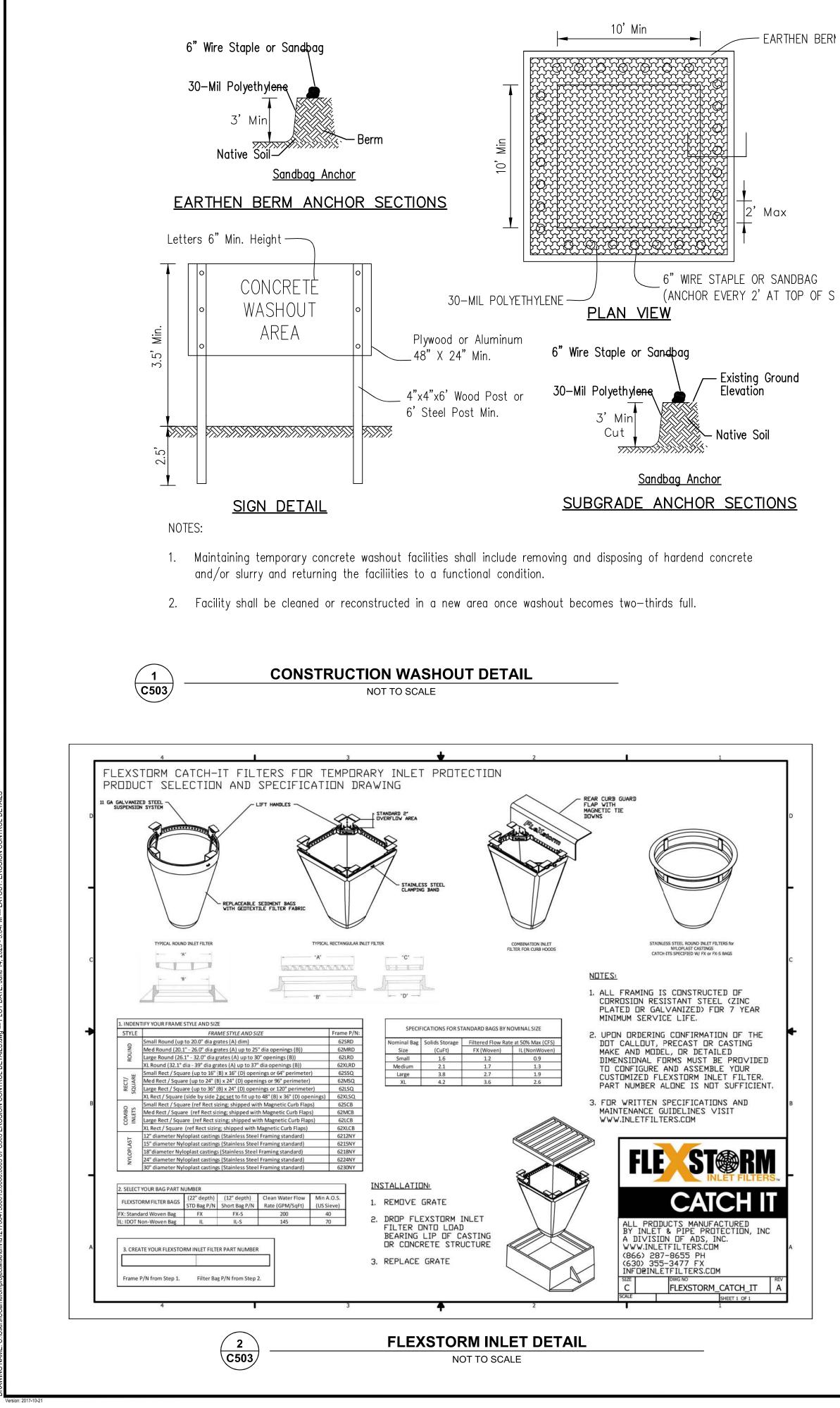

6. REMOVE ALL TEMPORARY SE/SC MEASURES.

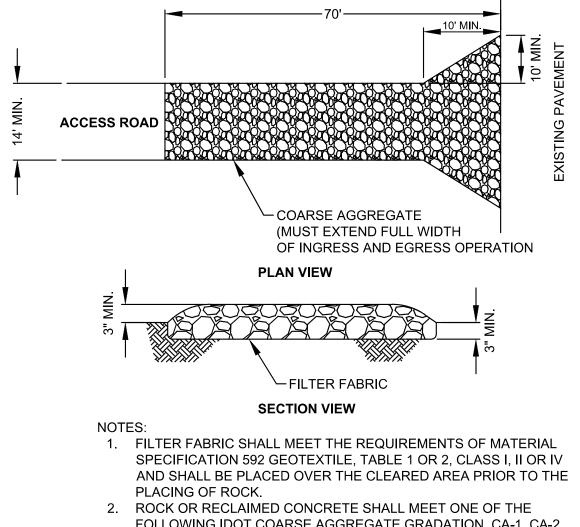
PROFESSIONAL ENGINEER: ANDREW B. GRAHAM 062048682 ANDREW B. GRAHAM 062.048682 EXPIRATION DATE: And B. L 11/30/23 TRC ENVIRONMENTAL CORP. DESIGN FIRM LIC. # 18400496-0002 2023.06.15 10:47:04-05'00' CC | 6/14/2023 | ISSUED FOR PERMIT ABG NO. BY DATE APP'D. REVISION **RENEWABLE PROPERTIES, LLC HIGHWAY 20 SOLAR** KANE COUNTY, IL TITLE: **GENERAL NOTES** N. SCHULTZ PROJ. NO.: 500015.0000.0005 RAWN BY: HECKED BY A. GRAHAM G010 PPROVED B A. GRAHAM JUNE 2023 230 West Monroe St. Suite 1840 Chicago, IL 60606 Phone: 312.578.0870 500015.0000.0005 02 G010 GENERAL NOTES.dwg



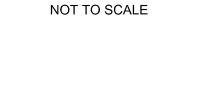


HMA SHOULDER ADJACENT TO FLEXABLE PAVEMENT


NOT TO SCALE

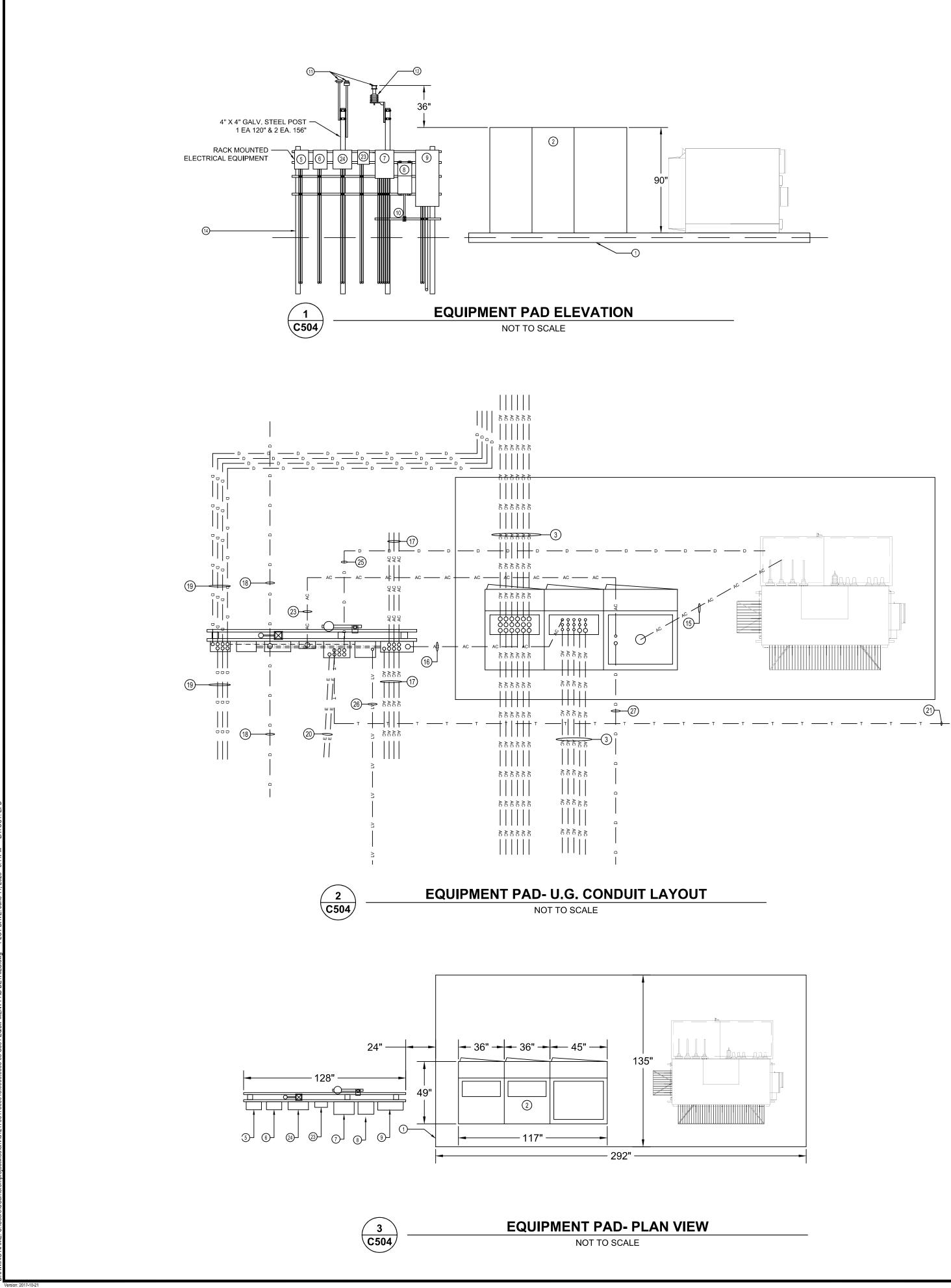


PROFESSIONAL ENGINEER: ANDREW B. GRAHAM 062048682 ANDREW B. GRAHAM 062.048682 And B. S. EXPIRATION DATE: 11/30/23 TRC ENVIRONMENTAL CORP. DESIGN FIRM LIC. # 18400496-0002 2023.06.15 10:48:06-05'00' 1 CC 6/14/2023 ISSUED FOR PERMIT ABG NO. BY DATE APP'D. REVISION PROJECT: RENEWABLE PROPERTIES, LLC HIGHWAY 20 SOLAR KANE COUNTY, IL ITLE: **PV TRACKERS** 500015.0000.0005 N. SCHULTZ PROJ. NO.: DRAWN BY: CHECKED BY: A. GRAHAM C502 PPROVED BY: A. GRAHAM JUNE 2023 DATE: 230 West Monroe St. Suite 1840 Chicago, IL 60606 Phone: 312.578.0870 500015.0000.0005 06 C502 PV TRACKERS.dwg



- FOLLOWING IDOT COARSE AGGREGATE GRADATION, CA-1, CA-2, CA-3 OR CA-4 AND BE PLACED ACCORDING TO CONSTRUCTION SPECIFICATION 25 ROCKFILL USING PLACEMENT METHOD 1 AND CLASS 3 COMPACTION. 3. ANY DRAINAGE FACILITIES REQUIRED BECAUSE OF WASHING
- SHALL BE CONSTRUCTED ACCORDING TO MANUFACTURERS SPECIFICATIONS.
- 4. PROVIDE POSITIVE DRAINAGE TO SEDIMENT TRAPPING DEVICE.

STABILIZED CONSTRUCTION ENTRANCE



- 592 Geotextile Table 1 or 2, Class with equivalent opening size of at least 30 for nonwoven and 40 for woven.
- 3. Fence posts shall be either standard steel post or wood post with a minimum cross-sectional area of 3.0 sq. in.

"DEESS PROFESSIONAL ENGINEER: ANDREW B. GRAHAM 062048682 ANDREW B. GRAHAM 062.048682 EXPIRATION DATE: Ander B. L. 11/30/23 TRC ENVIRONMENTAL CORP. DESIGN FIRM LIC. # 18400496-0002 2023.06.15 10:48:18-05'00' CC 6/14/2023 ISSUED FOR PERMIT ABG NO. BY DATE APP'D. REVISION RENEWABLE PROPERTIES, LLC HIGHWAY 20 SOLAR **KANE COUNTY, IL EROSION CONTROL DETAILS** 500015.0000.0005 RAWN BY: N. SCHULTZ PROJ. NO.: HECKED BY A. GRAHAM C503 PPROVED BY A. GRAHAM JUNE 2023 230 West Monroe St. Suite 1840 Chicago, IL 60606 Phone: 312.578.0870 500015.0000.0005 07 C503 EROSION CONTROL DETAILS.dwg

1 2	CONCRETE EQUIPMENT PAD. SEE STRUCTURAL SHEET FOR CONSTRUCTION RE 4000A/480V "AC SWBD"
3	U.G. 480 VAC FEEDERS - INVERTERS
4	GALVANIZED STEEL SUPPORT RACK WITH STRUT MOUNTED ELECTRIC EQUIPME
5	ATI 4X CONTROLLER
6	ATI SITE DATA CONTROLLER
(7)	DAS BOX
8	MINI POWER CENTER 120/240V PNL-P2
9	277/480V SITE LOAD PANEL P1
	WP GFI CONVENIENCE OUTLET
	ATI WIND, GPS & GHI SENSOR MOUNTED TO EQUIPMENT RACK
(12)	WEATHER STATION MOUNTED ON EQUIPMENT RACK. SEE SHEET E312 DETAIL 1.
(13)	1-5/8" X 1-5/8" GALV STRUT (TYP.)
(14)	4" X 4" GALVANIZED STEEL POST (TYP.)
(15)	U.G. 480 VAC FEEDERS TO 4000A "AC SWBD"
(16)	U.G. 480 VAC FEEDER PANEL P1
(17)	U.G. 480 VAC FEEDER TRACKER MOTOR
(18)	U.G. DATA: INVERTERS
(19)	U.G. ATI TRACKER CONTROLLER CABLE
20	U.G. ELECTRONIC SIGNAL CABLE FOR IRR AND PNL TEMP SENSORS: 2 X 1" PVC CONDUITS, INSTALL PER EQUIPMENT SUPPLIER'S SHOP DRAWINGS.
(21)	U.G. DATA CABLE TO INTERNET SERVICE PROVIDER WHEN REQUIRED BY MONITORING SYSTEMS SUPPLIER. FIELD VERIFY POINT OF CONNECTION.
22	U.G. CURRENT AND VOLTAGE SIGNALS TO REMOTE METER WHEN REQUIRED BY MONITORING SYSTEMS PROVIDER. FIELD VERIFY POINT OF CONNECTION.
23	REMOTE METER ENCLOSURE (ALSO ENERGY)
24)	WEATHER STATION ENCLOSURE (ALSO ENERGY)
25	DATA LINE TO TRANSFORMER
26	U.G. 120V AC FEEDER TO NCEMC COMM. CABINET
27	U.G. FIBER LINE TO NCEMC COMM. CABINET

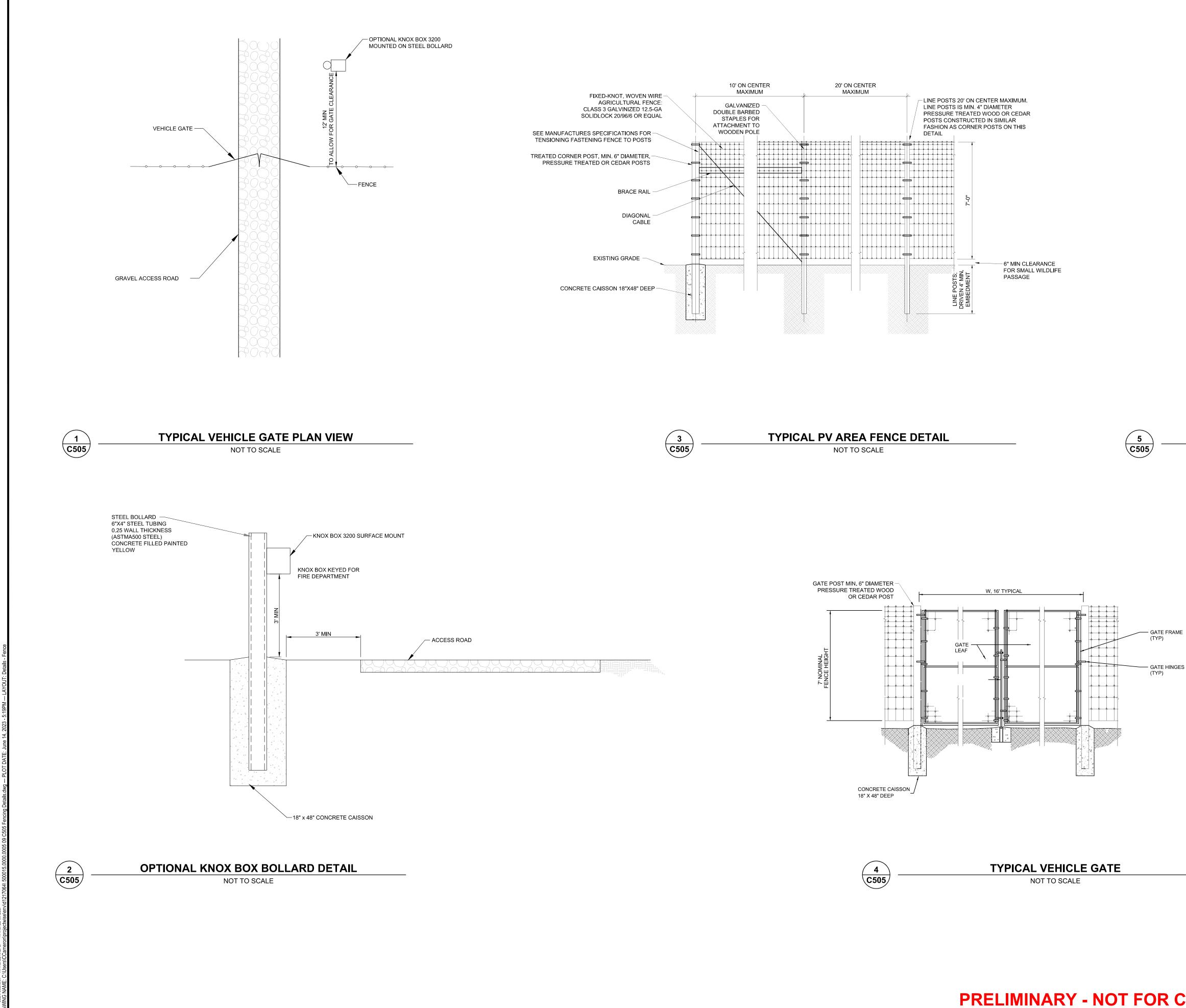
DIAGRAM NOTES

LEGEND

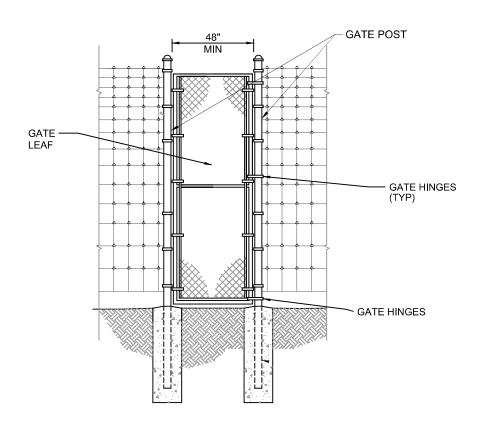
	ABOVE GROUND
	UNDER GROUND
D	U.G. DATA
LV	U.G. 120V
MV	U.G. MV
AC	U.G. 480V
DC	U.G. DC
——— E ———	U.G. SIGNAL
— T	U.G. TELCO

REQUIREMENTS

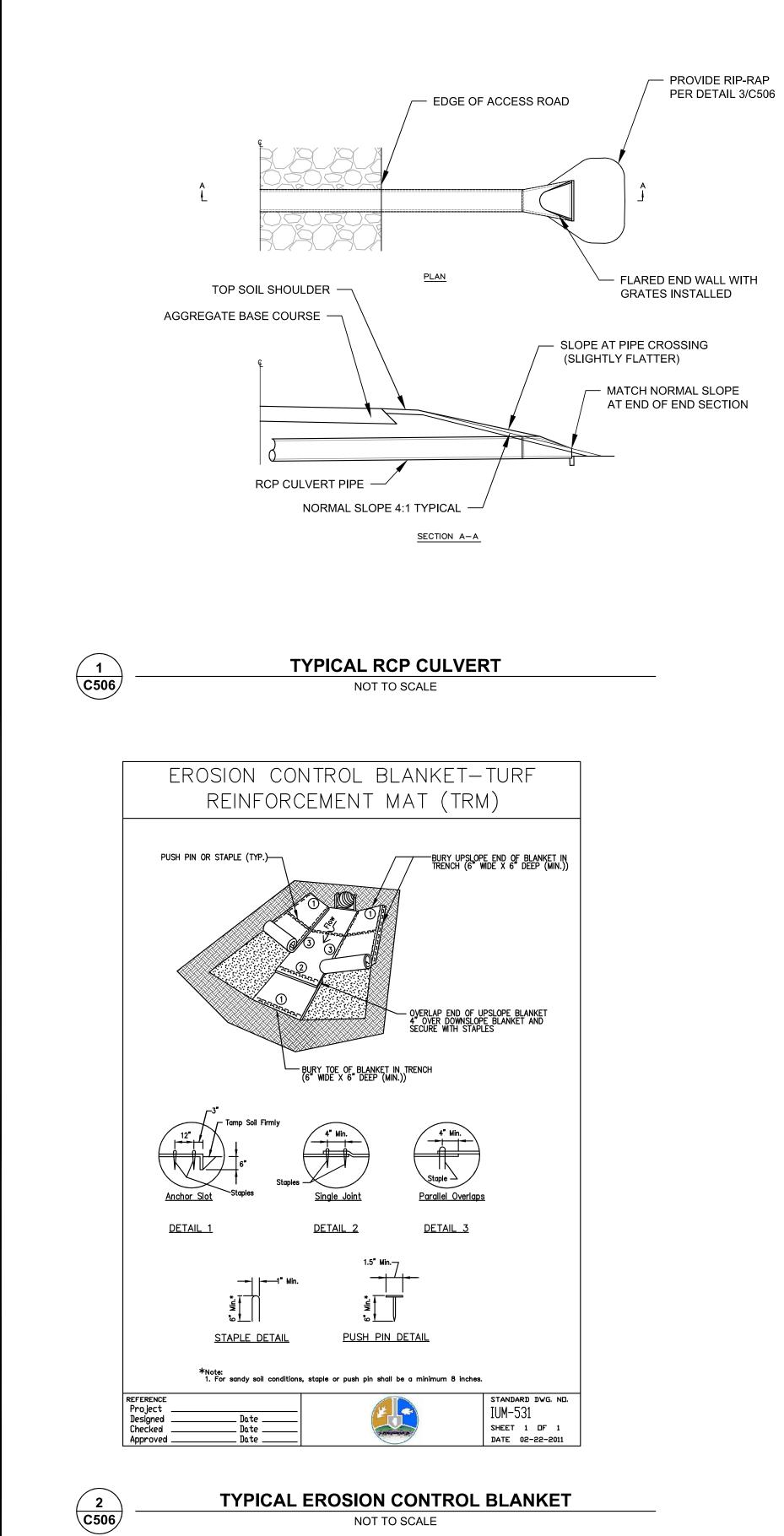
MENT

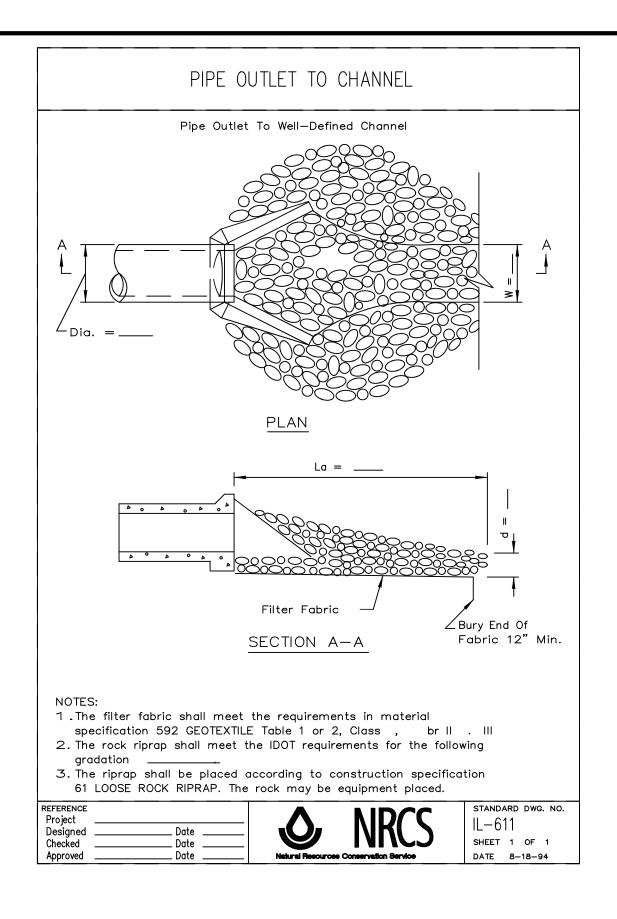

NOTES

1. THE EQUIPMENT SELECTION AND LAYOUT WAS PROVIDED BY RENEWABLE PROPERTIES LLC AND IS PROVIDED HERE FOR REFERENCE PURPOSES.


PROFESSIONAL ENGINEER: ANDREW B. GRAHAM 062048682 EXPIRATION DATE: 1/30/23 TRC ENVIRONMENTAL CORP. DESIGN FIRM LIC. # 18400496-000 2023.06.15 10:48:29-05'00' TRC ENVIRONMENTAL CORP. DESIGN FIRM LIC. # 18400496-000 1 CC 6/14/2023 ISSUED FOR PERMIT NO. BY DATE REVISION PROJECT: RENEWABLE PROPERTIES, LLC HIGHWAY 20 SOLAR KANE COUNTY, IL	D2 ABG APP'E
NO. BY DATE REVISION PROJECT: RENEWABLE PROPERTIES, LLC HIGHWAY 20 SOLAR KANE COUNTY, IL	-
NO. BY DATE REVISION PROJECT: RENEWABLE PROPERTIES, LLC HIGHWAY 20 SOLAR KANE COUNTY, IL	-
NO. BY DATE REVISION PROJECT: RENEWABLE PROPERTIES, LLC HIGHWAY 20 SOLAR KANE COUNTY, IL	-
NO. BY DATE REVISION PROJECT: RENEWABLE PROPERTIES, LLC HIGHWAY 20 SOLAR KANE COUNTY, IL	-
NO. BY DATE REVISION PROJECT: RENEWABLE PROPERTIES, LLC HIGHWAY 20 SOLAR KANE COUNTY, IL	-
PROJECT: RENEWABLE PROPERTIES, LLC HIGHWAY 20 SOLAR KANE COUNTY, IL	
RENEWABLE PROPERTIES, LLC HIGHWAY 20 SOLAR KANE COUNTY, IL	
EQUIPMENT PAD DETAILS	
DRAWN BY: N. SCHULTZ PROJ. NO.: 500015.	.0000.000
CHECKED BY: A. GRAHAM	
APPROVED BY: A. GRAHAM C504	
DATE: JUNE 2023	
230 West Mon Suit Chicago, IL Phone: 312.57	ite 1840

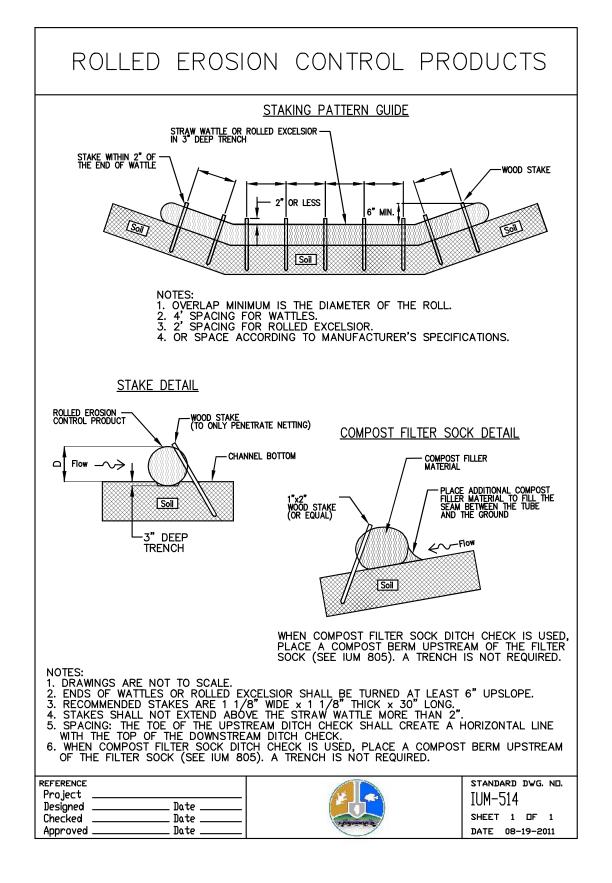
500015.0000.0005 08 C504 EQUIPMENT PAD DETAILS.dwg


PRELIMINARY - NOT FOR CONSTRUCTION



TYPICAL PEDESTRIAN ACCESS GATE

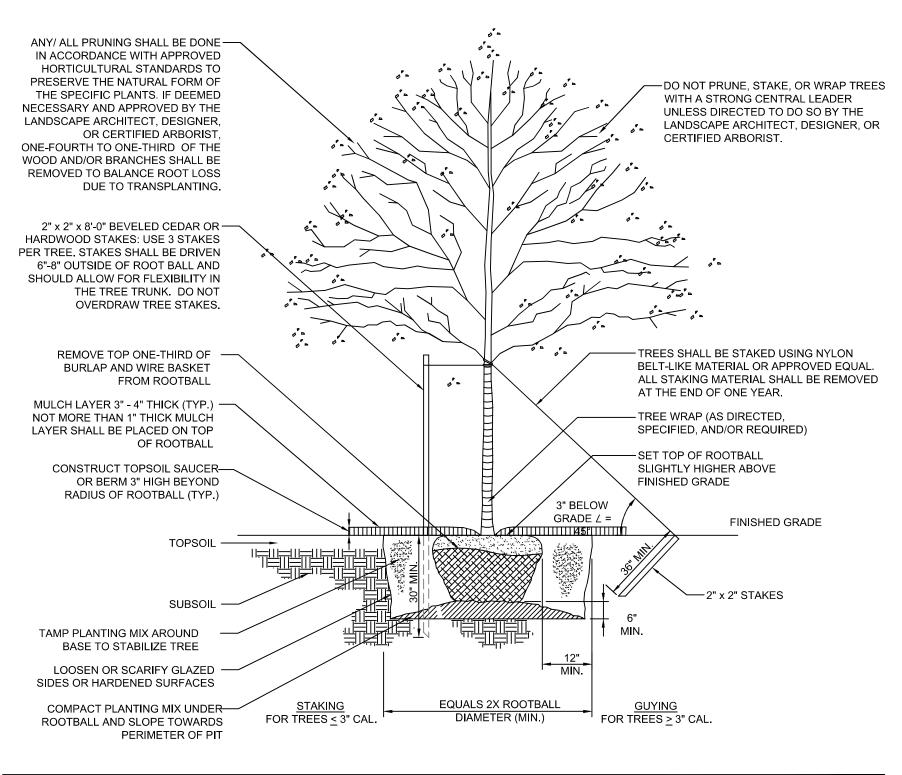
NOT TO SCALE


"DEES! PROFESSIONAL ENGINEER: ANDREW B. GRAHAM 062048682 ANDREW B. GRAHAM 062.048682 EXPIRATION DATE: Ander B. S. 11/30/23 TRC ENVIRONMENTAL CORP. DESIGN FIRM LIC. # 18400496-0002 2023.06.15 10:48:39-05'00' CC 6/14/2023 ISSUED FOR PERMIT ABG NO. BY DATE APP'D. REVISION ROJECT RENEWABLE PROPERTIES, LLC HIGHWAY 20 SOLAR KANE COUNTY, IL ITLE: FENCING DETAILS 500015.0000.0005 RAWN BY: N. SCHULTZ PROJ. NO.: CHECKED BY A. GRAHAM C505 PPROVED BY: A. GRAHAM JUNE 2023 TRC 230 West Monroe St. Suite 1840 Chicago, IL 60606 Phone: 312.578.0870 500015.0000.0005 09 C505 Fencing Details.dwg

TYPICAL CULVERT OUTLET STONE NOT TO SCALE

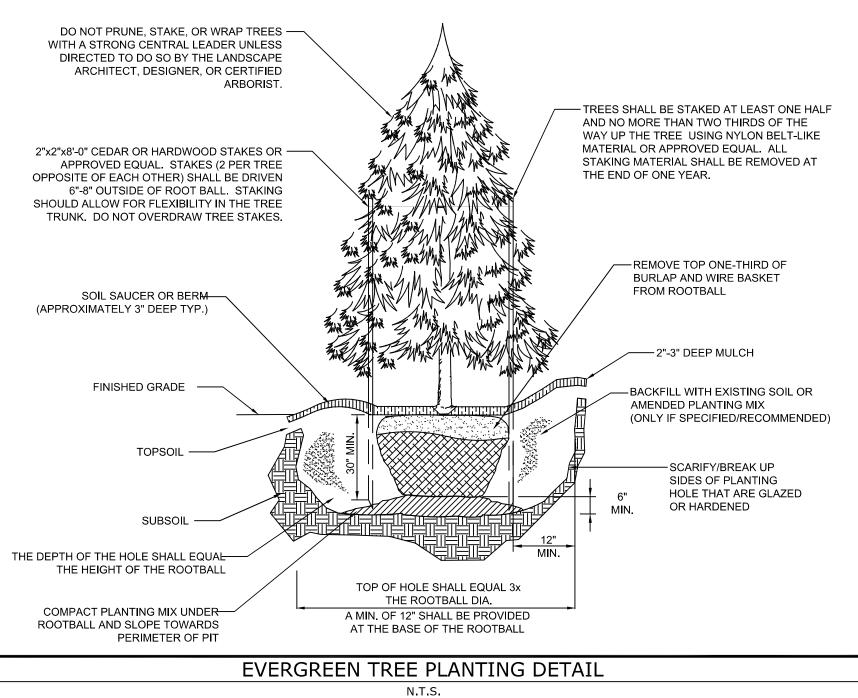
TYPICAL DITCH CHECK

NOT TO SCALE


"OFESS! PROFESSIONAL ENGINEER: ANDREW B. GRAHAM 062048682 ANDREW B. GRAHAM 062.048682 EXPIRATION DATE: AddwB. 20 11/30/23 TRC ENVIRONMENTAL CORP. OFILL DESIGN FIRM LIC. # 18400496-0002 2023.06.15 10:48:50-05'00' 1 CC 6/14/2023 ISSUED FOR PERMIT ABG NO. BY DATE APP'D. REVISION PROJECT RENEWABLE PROPERTIES, LLC HIGHWAY 20 SOLAR KANE COUNTY, IL TITLE: **CULVERT DETAILS** 500015.0000.0005 N. SCHULTZ PROJ. NO.: DRAWN BY: CHECKED BY: CC C506 PPROVED BY A. GRAHAM JUNE 2023 230 West Monroe St. TRO Suite 1840 Chicago, IL 60606 Phone: 312.578.0870 500015.0000.0005 10 C506 Culvert Details.dwg

2234 — USER: CGameron — ATTACHED XREFS. XREFHIGHWAY 20 SURVEY BASE: XREFHIGHWAY 20 RP V LAYOUT; XREFHIGHWAY 20 LA SCHEDULE & TEMPLATE; XREFHIGHWAY 20 LA SCHEDULE; XREFHIGHWAY 20 LA SCHEDULE & TEMPLATE; XREFHIGHWAY 20 LA SCHEDULE; XREFHIGHWAY 20 LA SCHEDULE & TEMPLATE; XREFHIGHWAY 20 LA SCHEDULE; XREFHIGHWAY 20 LA SCHEDULE; XREFHIGHWAY 20 LA SCHEDULE; XREFHIGHWAY 20 L

1.	THE LANDSCAPE PLAN AND DETAILS ARE FOR LANDSCAPING INFORMATION ONLY. PLEASE REFER TO THE SITE LAYOUT PLAN, GRADING PLAN A
	UTILITIES PLAN FOR ALL OTHER INFORMATION.
	THE CONTRACTOR SHALL MONITOR AND GUARANTEE THAT ALL PLANTS, TREES, AND SHRUBS SHALL BE HEALTHY AND FREE OF DISEASE FOR A OF (1) ONE YEAR AFTER SUBSTANTIAL COMPLETION AND ACCEPTANCE BY THE OWNER. CONTRACTOR SHALL REPLACE ANY DEAD OR UNHEALT PLANTS AT CONTRACTOR'S EXPENSE. FINAL ACCEPTANCE SHALL BE MADE IF ALL PLANTS MEET THE GUARANTEE REQUIREMENTS INCLUDING MAINTENANCE. MAINTENANCE RESPONSIBILITIES INCLUDE INVASIVE SPECIES MONITORING, REMOVAL, AND SUPPLEMENTATION. MONITORING PROJECT SITE SHALL OCCUR IN THE SPRING AND THE FALL TO DETERMINE THE PRESENCE OF INVASIVE SPECIES. SHOULD ANY INVASIVE SPECIES IDENTIFIED WITHIN THE PROJECT SITE, THE INVASIVE SPECIES SHALL BE REMOVED ACCORDING TO METHODS MOST LIKELY TO BE EFFECTIVE I CONTROLLING THAT SPECIES AND SUPPLEMENTING ITS REPLACEMENT WITH APPROPRIATE VEGETATION AND SEED MIX IDENTIFIED (AND APPR ON THIS PLAN AND/OR AN APPROVED EQUAL. ADDITIONAL MAINTENANCE RESPONSIBILITIES INCLUDE: APPROVED CULTIVATING, SPRAYING, WE WATERING, TIGHTENING OF TREE STRAP GUYS, PRUNING, FERTILIZING, MULCHING, AND ANY OTHER OPERATIONS NECESSARY TO MAINTAIN PL VIABILITY. MAINTENANCE SHALL BEGIN IMMEDIATELY AFTER PLANTING AND CONTINUE UNTIL 90 DAYS AFTER FINAL ACCEPTANCE.
	THE CONTRACTOR SHALL SUPPLY ALL LABOR, PLANTS, APPROVED SEEDING MIX, AND MATERIALS IN QUANTITIES SUFFICIENT TO COMPLETE THE SHOWN ON THE DRAWING(S) AND LISTED IN THE PLANT SCHEDULE(S) AND/OR SEEDING TABLE(S). IN THE EVENT OF A DISCREPANCY BETWEEN QUANTITIES SHOWN IN THE PLANT SCHEDULE AND/OR SEEDING TABLE AND THOSE REQUIRED BY THE DRAWINGS, THE LARGER SHALL APPLY. A PLANTS SHALL BE ACCLIMATED BY THE SUPPLY NURSERY TO THE LOCAL HARDINESS ZONE AND BE CERTIFIED THAT THE PLANTING MATERIAL I BEEN GROWN FOR A MINIMUM OF (2) TWO YEARS AT THE SOURCE AND OBTAINED WITHIN 200 MILES OF PROJECT SITE UNLESS OTHERWISE APP BY OWNER, CERTIFIED LANDSCAPE INSPECTOR, OR LANDSCAPE ARCHITECT.
	THE LOCATIONS FOR PLANT MATERIAL ARE APPROXIMATE AND ARE SUBJECT TO FIELD ADJUSTMENT DUE TO SLOPE, VEGETATION, AND SITE F SUCH AS THE LOCATION OF ROCK OUTCROPS. PRIOR TO PLANTING THE CONTRACTOR SHALL ACCURATELY STAKE OUT THE LOCATIONS FOR A PLANTS. THE OWNER, CERTIFIED LANDSCAPE INSPECTOR, OR LANDSCAPE ARCHITECT SHALL APPROVE THE FIELD LOCATIONS OR ADJUSTMEN THE PLANT MATERIAL.
5.	ALL SHRUB MASSING AREAS SHALL BE MULCHED TO A DEPTH OF 2" WITH SHREDDED HARDWOOD BARK MULCH.
	NO PLANT SHALL BE PLACED IN THE GROUND BEFORE ROUGH GRADING HAS BEEN COMPLETED AND APPROVED BY THE OWNER, CERTIFIED LANDSCAPE INSPECTOR, OR LANDSCAPE CONTRACTOR. STAKING THE LOCATION OF ALL TREES AND SHRUBS SHALL BE COMPLETED PRIOR TO PLANTING FOR APPROVAL BY THE OWNER, CERTIFIED LANDSCAPE INSPECTOR, OR LANDSCAPE ARCHITECT. STAKING OF THE INSTALLED TREE COMPLETED THE SAME DAY AS IT IS INSTALLED. ALL TREES SHALL BE STAKED OR GUYED AS PER THE DETAIL. SEE LANDSCAPING PLAN(S) FOR PLANTING DETAILS.
	COORDINATE PLANT MATERIAL LOCATIONS WITH SITE UTILITIES. SEE SITE LAYOUT, GRADING AND/OR UTILITY PLANS FOR STORM, SANITARY, G ELECTRIC, TELEPHONE AND WATER LINES. UTILITY LOCATIONS ARE APPROXIMATE. EXERCISE CARE WHEN DIGGING IN AREAS OF POTENTIAL C WITH UNDERGROUND OR OVERHEAD UTILITIES. THE CONTRACTOR IS RESPONSIBLE FOR ANY DAMAGE DUE TO CONTRACTOR'S NEGLIGENCE A SHALL REPLACE OR REPAIR ANY DAMAGE AT CONTRACTOR'S EXPENSE.
	LANDSCAPE PLANTING PITS MUST BE FREE DRAINING. PAVEMENT, COMPACTED SUBGRADE, AND BLASTED ROCK SHALL BE REMOVED TO A DE OR TO A GREATER DEPTH IF REQUIRED BY PLANTING DETAILS OR SPECIFICATIONS. REPLACE SOIL WITH MODERATELY COMPACTED LOAM OR LOAM FREE FROM STONES AND RUBBISH 1" OR GREATER IN DIAMETER AND ANY OTHER MATERIAL HARMFUL TO PLANT GROWTH AND DEVELO PLANTING INSTALLATION SHALL BE AS DETAILED AND CONTAIN PLANTING MIX AS SPECIFIED UNLESS RECOMMENDED OTHERWISE BY SOIL ANA
	PLANTING SOIL MIXTURE: 2 PARTS PEAT MOSS 5 PARTS TOPSOIL MYCORRHIZA INOCULANT - "TRANSPLANT 1-STEP" AS MANUFACTURED BY ROOTS, INC. OR APPROVED EQUAL. USE PER MANUFACTURER'S
	 RECOMMENDATIONS FOR TREES AND SHRUBS. FERTILIZER/LIME APPLY AS RECOMMENDED BY SOIL ANALYSIS TREES, AND SHRUBS: TREES AND SHRUBS SHALL BE NURSERY GROWN UNLESS OTHERWISE NOTED AND HARDY UNDER CLIMATIC CONDITIONAL CONDITICONAL CONDICAL CONDITICONAL CONDITICONAL CONDITICONAL
	SIMILAR TO THOSE IN THE LOCATION OF THE PROJECT. THEY SHALL BE TYPICAL OF THEIR SPECIES OR VARIETY, WITH NORMAL HABIT OF GI THEY SHALL BE SOUND, HEALTHY, VIGOROUS, WELL-BRANCHED AND DENSELY FOLIATED WHEN IN LEAF. THEY SHALL BE FREE OF DISEASE, PESTS, EGGS OR LARVAE. THEY SHALL HAVE HEALTHY AND WELL-DEVELOPED ROOT SYSTEMS. ALL TREES SHALL HAVE STRAIGHT SINGLE T WITH THEIR MAIN LEADER INTACT UNLESS OTHERWISE STATED. THE OWNER, CERTIFIED LANDSCAPE INSPECTOR, OR LANDSCAPE ARCHITE ONLY PERMIT SUBSTITUTIONS UPON WRITTEN APPROVAL. THEIR SIZES SHALL CONFORM TO THE MEASUREMENT SPECIFIED ON THE DRAWI PLANTS LARGER THAN SPECIFIED ON THE DRAWINGS MAY BE USED IF APPROVED. THE USE OF SUCH PLANTS SHALL NOT INCREASE THE CC PRICE. ALL TREES AND SHRUBS SHALL BE MULCHED IN ACCORDANCE WITH THE RESPECTIVE PLANTING DETAIL(S) PROVIDED IN THE LANDS PLAN.
	 ALL PRUNING SHALL CONFORM TO THE TREE CARE INDUSTRY ASSOCIATION (TCIA) ANSI A300 (PART 1) - 2017 PRUNING STANDARDS. PRUNING STANDARDS SHALL RECOGNIZE BUT, ARE NOT LIMITED TO, THE FOLLOWING PRUNING OBJECTIVES: MANAGE RISK, MANAGE HEALTH, DEVEL STRUCTURE, PROVIDE CLEARANCE, MANAGE SIZE OR SHAPE, IMPROVE AESTHETICS, MANAGE PRODUCTION OF FRUIT, FLOWERS, OR OTHE PRODUCTS, AND/OR MANAGE WILDLIFE HABITAT. DEVELOPING STRUCTURE SHALL IMPROVE BRANCH AND TRUNK ARCHITECTURE, PROMOT SUBORDINATE CERTAIN LEADERS, STEMS, OR BRANCHES; PROMOTE DESIRABLE BRANCH SPACING; PROMOTE OR DISCOURAGE GROWTH IN PARTICULAR DIRECTION (DIRECTIONAL PRUNING); MINIMIZE FUTURE INTERFERENCE WITH TRAFFIC, LINES OF SIGHT, INFRASTRUCTURE, OR PLANTS; RESTORE PLANTS FOLLOWING DAMAGE; AND/OR REJUVENATE SHRUBS. PROVIDING CLEARANCE SHALL ENSURE SAFE AND RELIAE UTILITY SERVICES; MINIMIZE CURRENT INTERFERENCE WITH TRAFFIC, LINES OF SITE, INFRASTRUCTURE, OR OTHER PLANTS; RAISE CROWN MOVEMENT OF TRAFFIC OR LIGHT PENETRATION; ENSURE LINES OF SIGHT OR DESIRED VIEWS; PROVIDE ACCESS TO SITES, BUILDINGS, OR STRUCTURES; AND/OR COMPLY WITH REGULATIONS.
	 TOPSOIL SHALL BE INSTALLED AT A MINIMUM DEPTH OF 4 INCHES. CONTRACTOR SHALL SUBMIT TOPSOIL TO A CERTIFIED TESTING LABORAD DETERMINE PH, FERTILITY, ORGANIC CONTENT AND MECHANICAL COMPOSITION. THE CONTRACTOR SHALL SUBMIT THE TEST RESULTS FRO REGIONAL EXTENSION OFFICE OF USDA TO THE OWNER, CERTIFIED LANDSCAPE INSPECTOR, OR LANDSCAPE ARCHITECT FOR REVIEW AND APPROVAL. CONTRACTOR SHALL INCORPORATE AMENDMENTS FOR GOOD PLANT GROWTH AND PROPER SOIL ACIDITY RECOMMENDED FRO TOPSOIL TEST.
	 NO PHOSPHOROUS SHALL BE USED AT PLANTING TIME UNLESS SOIL TESTING HAS BEEN COMPLETED AND TESTED BY A HORTICULTURAL TE LAB AND SOIL TESTS SPECIFICALLY INDICATE A PHOSPHOROUS DEFICIENCY THAT IS HARMFUL, OR WILL PREVENT NEW LAWNS/GRASSES AI PLANTINGS FROM ESTABLISHING PROPERLY.
	 IF SOIL TESTS INDICATE A PHOSPHOROUS DEFICIENCY THAT WILL IMPACT PLANT AND LAWN ESTABLISHMENT, PHOSPHOROUS SHALL BE AP THE MINIMUM RECOMMENDED LEVEL PRESCRIBED IN THE SOIL TEST FOLLOWING ALL APPLICABLE STANDARDS, REQUIREMENTS, AND/OR REGULATIONS.
	ALL SLOPES GREATER THAN 3:1 RECEIVING A WILDFLOWER, WETLAND, AND/OR GRASS SEEDING MIXTURE SHALL BE COVERED WITH AN ERC CONTROL BLANKET.
	 ALL WILDFLOWERS AND GRASSES SOWED SHALL BE ALLOWED TO GROW TO THEIR NATURALLY OCCURRING HEIGHTS WHENEVER POSSIBLE WILDFLOWERS AND/OR GRASSES CAN BE MOWED/MAINTAINED (WITHIN ACCEPTABLE AREAS IDENTIFIED AND/OR APPROVED BY APPROPRIA REGULATORY AGENCIES) AS OFTEN AS NEEDED TO KEEP THE VEGETATION AT A DESIRED AND/OR MANAGEABLE/MANICURED HEIGHT.
	PRUNE ALL DAMAGED OR DEAD WOOD/BRANCHES PRIOR TO PLANTING WOOD/BRANCHES PRIOR TO PLANTING SHALL BE PLACED ON TOP OF ROOTBALL
	SET TOP OF ROOTBALL SLIGHTLY HIGHER ABOVE FINISHED GRADE AND WIRE BASKET FROM ROOTBALL
	BACKFILL WITH EXISTING SOIL OR AMENDED PLANTING MIX (ONLY IF SPECIFIED/RECOMMENDED)
	LOOSEN OR SCARIFY GLAZED SIDES OR HARDENED SURFACES HARDENED SURFAC
	BALLED AND BURLAPPED CONTAINER GROWN
	SHRUB PLANTING DETAIL


- IT IS NOT RECOMMENDED TO AMEND THE EXISTING SOIL BEFORE BACKFILLING THE HOLE
- UNLESS SOIL CONDITIONS ARE POOR FOR PLANTING. • WATER THOROUGHLY TO HELP ENSURE THE REMOVAL OF AIR POCKETS.

NATIVE/DECIDUOUS TREE PLANTING DETAIL N.T.S.

NOTES:

- TREE PLANTING SHALL BEAR SAME RELATIONSHIP TO FINISH GRADE AS IT WAS PRE-DUG IN THE NURSERY.
- NEVER CUT THE PRIMARY LEADER.
- IT IS NOT RECOMMENDED TO AMEND THE EXISTING SOIL BEFORE BACKFILLING THE HOLE UNLESS SOIL CONDITIONS ARE POOR FOR PLANTING.
- WATER THOROUGHLY TO HELP ENSURE THE REMOVAL OF AIR POCKETS AND PROPERLY SET THE TREE.

	ARRAY MIX SOUTH & WE		RATE	
CIENTIFIC NAME	COMMON NAME	SEEDS/SF	(LBS/AC)	% MIX (BY SF
OVER		1	1	
VENA SATIVA	OATS	6	20.4200	12.85%
ORB				
CHILLEA MILLEFOLIUM	COMMON YARROW	0.41	0.01	
LLIUM STELLATUM	PRAIRIE WILD ONION	0.51	0.12	
NEMONE CANADESIS	CANADA ANEMONE	0.18	0.06	
NEMONE CYLINDRICA	LONG-HEADED THIMBLEWEED	0.6	0.06	
SCLEPIAS SYRIACA	COMMON MILKWEED	0.46	0.30	
SCLEPIAS VERTICILLATA	WHORLED MILKWEED	0.32	0.08	
STRAGALUS CRASSICARPUS	GROUND PLUM	0.36	0.19	
CHINACEA ANGUSTIFOLIA	NARROW-LEAVED PURPLE CONEFLOWER	0.64	0.25	
UTHAMIA GRAMINIFOLIA	GRASS LEAVED GOLDENROD	0.8	0.01	
ALIUM BOREALE	NORTHERN BEDSTRAW	0.4	0.02	
ATRIS ASPERA	ROUGH BLAZING STAR	0.28	0.05	
OBELIA SPICATA	ROUGH-SPIKED LOBELIA	1.03	0.00	
ONARDA FISTULOSA	WILD BERGAMOT	0.8	0.03	30.83%
ENSTEMON GRANDIFLORUS	LARGE-FLOWERED BEARD TONGUE	0.48	0.09	00.00 /8
HLOX PILOSA	PRAIRIE PHLOX	0.11	0.02	
OTENTILLA ARGUTA	PRAIRIE CINQUEFOIL	0.53	0.01	
YCNANTHEMUM IRGINIANUM	VIRGINIA MOUNTAIN MINT	0.76	0.01	
ATIBIDA COLUMNIFERA	PRAIRIE CONEFLOWER	0.96	0.06	
UDBECKIA HIRTA	BLACK-EYED SUSAN	1.58	0.05	
ISYRINCHIUM CAMPESTRE	FIELD BLUE EYED GRASS	0.52	0.03	
OLIDAGO RIGIDA	STIFF GOLDENROD	0.47	0.03	
OLIDAGO SPECIOSA	SHOWY GOLDENROD	0.55	0.02	
YMPHYOTRICHUM RICOIDES	HEATH ASTER	0.46	0.01	
YMPHYOTRICHUM LAEVE	SMOOTH ASTER	0.63	0.03	
IZIA APTERA	HEART-LEAVED ALEXANDERS	0.55	0.12	
RAMINOID				
OUTELOUA CURTIPENDULA	SIDE-OATS GRAMA	3.31	1.50	
OUTELOUA GRACILIS	BLUE GRAMA	4.59	0.31	
OELERIA MACRANTHA	JUNEGRASS	4.59	0.07	41.90%
CHIZACHYRIUM SCOPARIUM	LITTLE BLUESTEM	4.13	0.75	
POROBOLUS HETEROLEPIS	PRAIRIE DROPSEED	2.94	0.50	
EGUME				
STRAGALUS CANADENSIS	CANADA MILK VETCH	0.78	0.12	
ALEA CANDIDA	WHITE PRAIRIE CLOVER	1.74	0.25	9.83%
ALEA PURPUREA	PURPLE PRAIRIE CLOVER	2.07	0.38	
EDGE				
AREX BICKNELLII	BICKNELL'S SEDGE	0.78	0.12	
AREX BREVIOR	SHORT SEDGE	0.67	0.07	4.58%
AREX PENSYLVANICA	PENNSYLVANIA SEDGE	0.69	0.06	

NOTE: GRASS SEED MIXES ARE COMPRISED OF GRASSES THAT ARE NATIVE AND/OR INDIGENOUS TO THE AREA AND/OR CONSIDERED FAVORABLE FOR WILDLIFE HABITAT AND SUSTAINABLE GROWTH. ADDITIONALLY, THE SOLAR FARM SEED MIX WAS DEVELOPED ESPECIALLY FOR NATIVE GRASS PLANTINGS AROUND SOLAR ARRAY FIELDS AND SHALL BE UTILIZED ACCORDINGLY.

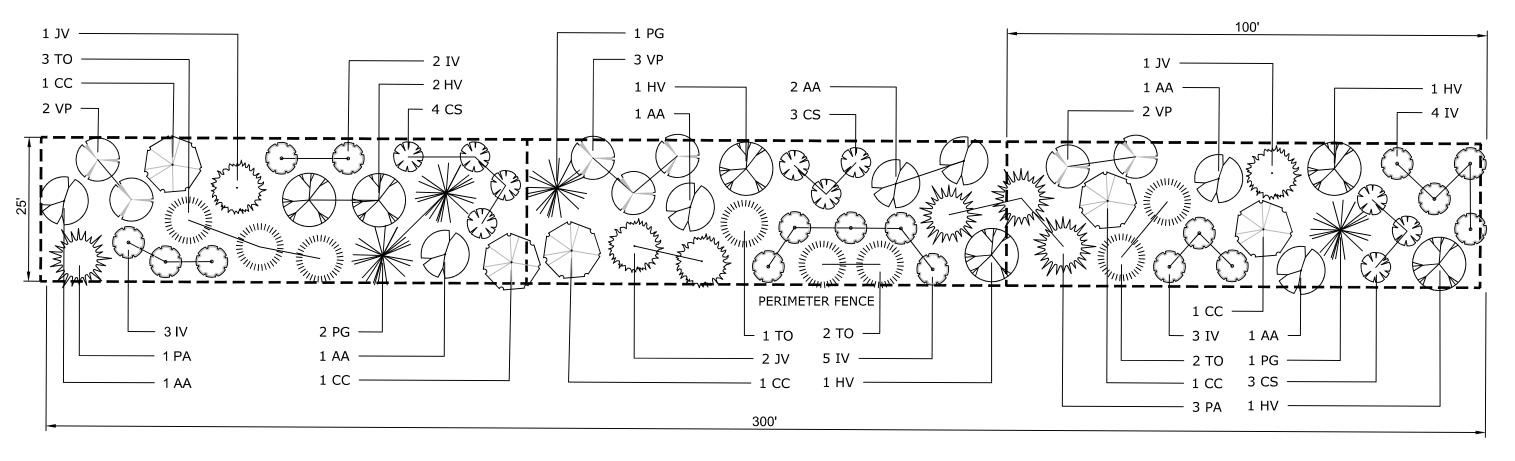
SEED MIXES TO FOLLOW SAMPLE SPECIFICATIONS FOR THE ESTABLISHMENT OF NATIVE VEGETATION AS PART OF HABITAT FRIENDLY SOLAR PROJECTS DEVELOPED BY THE MINNESOTA BOARD OF WATER AND SOIL RESOURCES AND THE MINNESOTA DEPARTMENT OF NATURAL RESOURCES. SEE "PRAIRIE ESTABLISHMENT & MAINTENANCE TECHNICAL GUIDANCE FOR SOLAR PROJECTS" BY THE MINNESOTA DEPARTMENT OF NATURAL RESOURCES, LAST REVISED JULY 2020, FOR FERTILIZER AND PESTICIDE APPLICATION RULES, REGULATIONS AND RESTRICTIONS.

SOLAR FARM SEED MIX

	BOTANICAL NAME	COMMON NAME	RATE (LBS/ACRE)	RATE (LBS/1000 FT ²)	NOP NOP		TRACING IN	ROFESSIONAL EI ANDREW B. GRAHAM 062048682		
19.53%					5000	EW B. GRAH 52.048682	1015	XPIRATION DATE		
27.34%	VIRGINIA WILD RYE	ELYMUS VIRGINICUS			Andri	B.S.		11/30/23		
11.72%	SWITCHGRASS (BLACKWELL)	PANICUM VIRGATUM			THE STAT		OSHIMMEN			
3.91%	DEER TONGUE GRASS	PANICUM CLANDESTINUM			1111111	OFILLIN			IENTAL CORP. C. # 18400496-000	าว
1.25%	BUTTERFLY MILKWEED	ASCLEPIAS TUBEROSA			2023.06	.15 10:49:			0. # 10400490-000	72
2.47%	BLACKEYED SUSAN	RUDBECKIA HIRTA								
1.86%	OHIO SPIDERWORT	TRADESCANTIA OHIENSIS								
7.85%	WILD SENNA	CASSIA MARILANDICA	12	.275						
4.55%	ILLINOIS BUNDLEFLOWER	DESMANTHUS ILLINOENSIS			1 CC	6/14/2023	ISSUED FOR PERM	IT		ABG
6.97%	PURPLE CONEFLOWER	ECHINACEA PURPUREA			NO. BY	DATE		REVISION		APP'E
6.60%	FALSE SUNFLOWER	HELIOPSIS HELIANTHOIDES			PROJECT:					
0.84%	BERGAMOT	MONARDA FISTULOSA						AY 20 SOLA	•	
0.89%	NEW ENGLAND ASTER	ASTER NOVAE-ANGLIAE						COUNTY, IL		
3.89%	MAXIMILIAN SUNFLOWER	HELIANTHUS MAXIMILIANI			TITLE:					
0.36%	JOE-PYE WEED	EUPATORIUM FISTULOSUM					LANDSC		II S 1	
								/		
	WET MEA	DOW SEED MIX			DRAWN BY:		G. TURNER	PROJ. NO.:	500015	.0000.000
					CHECKED BY:		M. ROSS			
					APPROVED B	Y:	A. GRAHAM		L101	
					DATE:		JUNE 2023			

NOTES:

• TREE PLANTING SHALL BEAR SAME RELATIONSHIP TO FINISH GRADE AS IT WAS PRE-DUG IN THE NURSERY.


- NEVER CUT THE PRIMARY LEADER.
- IT IS NOT RECOMMENDED TO AMEND THE EXISTING SOIL BEFORE BACKFILLING THE HOLE UNLESS SOIL CONDITIONS ARE POOR FOR PLANTING.
- WATER THOROUGHLY TO HELP ENSURE THE REMOVAL OF AIR POCKETS AND PROPERLY SET THE TREE.

FILE NO.

500015.0000.0005 11 L100 LAND PLAN.dwg

ADDITIONAL PLANTING NOTES: SHRUB AND TREE LOCATIONS SHALL BE STAKED OUT AND APPROVED PRIOR TO PLANTING. SEE DETAIL SHEETS L-101 AND L-102 FOR PLANTING DETAILS, NOTES, AND SCHEDULES FOR EACH LANDSCAPE BUFFER.

PLACEMENT OF LANDSCAPE BUFFERS SHALL BE LOCATED AT THE OUTER EDGE OF THE PERIMETER FENCE TO ENHANCE SCREENING EFFORTS AND AVOID SHADING CONCERNS -SOME FIELD ADJUSTMENTS FOR STAKED LOCATIONS WILL BE NECESSARY.

LEGEND - TYPE A TOTALS VISUAL MITIGATION PLANTING TEMPLATE TYPE A LANDSCAPE PLANTING SCHEDULE DECIDUOUS AND EVERGREEN TREES BOTANICAL NAME/ MATURE SYMBOL QUANTITY SIZE ROOT COMMON PLANT NAME HEIGHT AMELANCHIER ARBOREA 6'-8' HT. AA 44 B&B 15'-20' HT. DOWNY SHADBUSH CLUMP CARPINUS CAROLINIANA СС 31 2" MIN. CAL. B&B 25'-30' HT. AMERICAN HORNBEAM HAMAMELIS VIRGINIANA ΗV 38 3'-4' HT. B&B 20'-25' HT. COMMON WITCH HAZEL JUNIPERUS VIRGINIANA JV 25 6'-7' HT. B&B 40'-50' HT. EASTERN RED CEDAR PICEA ABIES NORWAY SPRUCE PA 25 6'-7' HT. B&B 40'-60' HT. PICEA GLAUCA WHITE SPRUCE PG 27 6'-7' HT B&B 40'-60' HT. THUJA OCCIDENTALIS то 27 6'-7' HT. B&B 30'-40' HT. NORTHERN WHITE CEDAR <u>SHRUBS</u>

SYMBOL	BOTANICAL NAME/ COMMON PLANT NAME	QUANTITY	SIZE	ROOT	MATURE HEIGHT
cs	CORNUS SERICEA RED OSIER DOGWOOD	62	24"-30" HT.	3 / 5 GAL. CONT.	7'-9' HT.
IV	ILEX VERTICILLATA COMMON WINTERBERRY	107	24"-30" HT.	3 / 5 GAL. CONT.	10'-12' HT.
VP	VIBURNUM PRUNIFOLIUM BLACKHAW VIBURNUM	44	24"-30" HT.	3 / 5 GAL. CONT.	10'-12' HT.

VISUAL MITIGATION PLANT TOTALS

LEGEND - VM1

LANDSCAPE	E PLANTING SCHEDULE		тоти	AL MITIGATION LEN	IGTH = 900 LF
DECIDU	OUS AND EVERGREEN TREES				
SYMBOL	BOTANICAL NAME/ COMMON PLANT NAME	QUANTITY	SIZE	ROOT	MATURE HEIGHT
АА	AMELANCHIER ARBOREA DOWNY SHADBUSH	21	6'-8' HT. CLUMP	B&B	15'-20' HT.
сс	CARPINUS CAROLINIANA AMERICAN HORNBEAM	15	2" MIN. CAL.	B&B	25'-30' HT.
HV	HAMAMELIS VIRGINIANA COMMON WITCH HAZEL	18	3'-4' HT.	B&B	20'-25' HT.
JV	JUNIPERUS VIRGINIANA EASTERN RED CEDAR	12	6'-7' HT.	B&B	40'-50' HT.
PA	PICEA ABIES NORWAY SPRUCE	12	6'-7' HT.	B&B	40'-60' HT.
PG	PICEA GLAUCA WHITE SPRUCE	12	6'-7' HT.	B&B	40'-60' HT.
то	THUJA OCCIDENTALIS NORTHERN WHITE CEDAR	24	6'-7' HT.	B&B	30'-40' HT.

SHRUBS					
SYMBOL	BOTANICAL NAME/ COMMON PLANT NAME	QUANTITY	SIZE	ROOT	MATURE HEIGHT
CS	CORNUS SERICEA RED OSIER DOGWOOD	30	24"-30" HT.	3 / 5 GAL. CONT.	7'-9' HT.
IV	ILEX VERTICILLATA COMMON WINTERBERRY	51	24"-30" HT.	3 / 5 GAL. CONT.	10'-12' HT
VP	VIBURNUM PRUNIFOLIUM BLACKHAW VIBURNUM	21	24"-30" HT.	3 / 5 GAL. CONT.	10'-12' HT

	VM1 - VEGETATIVE BUFFER / SCREEN MITIGATION TABLE						١	/M2 - VEGETATIVE BUFFER	/ SCREEN MITIGATION TABLE		
NUMBER	MITIGATION TYPE	LENGTH	LINE/CHORD DIRECTION	START EASTING, NORTHING	END EASTING, NORTHING	NUMBER	MITIGATION TYPE	LENGTH	LINE/CHORD DIRECTION	START EASTING, NORTHING	END EASTING, NORTHING
L1	TYPE A	571	S00° 00' 27.10"W	E:949321.5409, N:1976166.4251	E:949321.4659, N:1975595.0008	L3	TYPE A	310	N89° 59' 50.96"W	E:948942.5934, N:1975594.9883	E:948632.3031, N:1975595.0020
L2	TYPE A	329	N90° 00' 00.00"W	E:949321.4659, N:1975595.0008	E:948992.5961, N:1975595.0008	L4	TYPE A	680	N00° 00' 00.00"E	E:948632.3031, N:1975595.0020	E:948632.3031, N:1976275.1617

VISUAL MITIGATION PLANTING TEMPLATE - TYPE A

PLANTING TEMPLATE TYPE A TOTAL MITIGATION | ENGTH = 900 | E

LEGEND - VM2

LANDSCAPE PLANTING SCHEDULE

DECIDUOUS AND EVERGREEN TREES

SYMBOL	BOTANICAL NAME/ COMMON PLANT NAME	QUANTITY	SIZE	ROOT	MATURE HEIGHT
АА	AMELANCHIER ARBOREA DOWNY SHADBUSH	23	6'-8' HT. CLUMP	B&B	15'-20' HT.
СС	CARPINUS CAROLINIANA AMERICAN HORNBEAM	16	2" MIN. CAL.	B&B	25'-30' HT.
HV	HAMAMELIS VIRGINIANA COMMON WITCH HAZEL	20	3'-4' HT.	B&B	20'-25' HT.
٦V	JUNIPERUS VIRGINIANA EASTERN RED CEDAR	13	6'-7' HT.	B&B	40'-50' HT.
PA	PICEA ABIES NORWAY SPRUCE	13	6'-7' HT.	B&B	40'-60' HT.
PG	PICEA GLAUCA WHITE SPRUCE	15	6'-7' HT.	B&B	40'-60' HT.
то	THUJA OCCIDENTALIS NORTHERN WHITE CEDAR	27	6'-7' HT.	B&B	30'-40' HT.

SHRUBS

SYMBOL	BOTANICAL NAME/ COMMON PLANT NAME	QUANTITY	SIZE	ROOT	MATURE HEIGHT
CS	CORNUS SERICEA RED OSIER DOGWOOD	32	24"-30" HT.	3 / 5 GAL. CONT.	7'-9' HT.
IV	ILEX VERTICILLATA COMMON WINTERBERRY	56	24"-30" HT.	3 / 5 GAL. CONT.	10'-12' HT.
VP	VIBURNUM PRUNIFOLIUM BLACKHAW VIBURNUM	23	24"-30" HT.	3 / 5 GAL. CONT.	10'-12' HT.

PLANTING SCHEDULES VM1-VM2

COORDINATE TABLES: VM1-VM2

LEGEND

VISUAL MITIGATION PLANTING TEMPLATE - TYPE A LANDSCAPE PLANTING SCHEDULE (25' PRIMARY VISUAL BUFFER/SCREENING EFFORT)

DECIDU	IOUS AND EVERGREEN TREES				
SYMBOL	BOTANICAL NAME/ COMMON PLANT NAME	QUANTITY	SIZE	ROOT	MATURE HEIGHT
АА	AMELANCHIER ARBOREA DOWNY SHADBUSH	7	6'-8' HT. CLUMP	B&B	15'-20' HT.
сс	CARPINUS CAROLINIANA AMERICAN HORNBEAM	5	2" MIN. CAL.	B&B	25'-30' HT.
HV	HAMAMELIS VIRGINIANA COMMON WITCH HAZEL	6	3'-4' HT.	B&B	20'-25' HT.
JV	JUNIPERUS VIRGINIANA EASTERN RED CEDAR	4	6'-7' HT.	B&B	40'-50' HT.
PA	PICEA ABIES NORWAY SPRUCE	4	6'-7' HT.	B&B	40'-60' HT.
PG	PICEA GLAUCA WHITE SPRUCE	4	6'-7' HT.	B&B	40'-60' HT.
то	THUJA OCCIDENTALIS NORTHERN WHITE CEDAR	8	6'-7' HT.	B&B	30'-40' HT.

<u>SHRUBS</u>

SYMBOL	BOTANICAL NAME/ COMMON PLANT NAME	QUANTITY	SIZE	ROOT	MATURE HEIGHT
CS	CORNUS SERICEA RED OSIER DOGWOOD	10	24"-30" HT.	3 / 5 GAL. CONT.	7'-9' HT.
IV	ILEX VERTICILLATA COMMON WINTERBERRY	17	24"-30" HT.	3 / 5 GAL. CONT.	10'-12' HT.
VP	VIBURNUM PRUNIFOLIUM BLACKHAW VIBURNUM	7	24"-30" HT.	3 / 5 GAL. CONT.	10'-12' HT.

PLANTING TEMPLATE TYPE A TOTAL MITIGATION LENGTH = 990 LF

SEAL:						
ANDREW B. GRAHAM O62.048682 TEOFILLWORT 2023.06.15 10:49:25-05'00'			CONTRACTOR OF CONTRACTOR		AM)2
						ļ
1	СС	6/14/2023				ABG
NO.	BY	0/14/2023 DATE	1330ED FOR PE	ISSUED FOR PERMIT REVISION		ABG APP'D.
				IWAY 20 SOL		
TITLE	:					
TITLE	:		LANDS	CAPE DETA	AILS 2	
	: /N BY:		LANDS G. TURNI			0000.0005
DRAW				ER PROJ. NO.:		0000.0005
DRAW CHEC	/N BY:		G. TURNI	ER PROJ. NO.:		0000.0005
DRAW CHEC	/N BY: KED BY: OVED B'		G. TURNI M. RO	ER PROJ. NO.: SS AM	500015.	0000.0005
DRAW CHEC APPR	/N BY: KED BY: OVED B :	Y:	G. TURNI M. RO A. GRAH/	ER PROJ. NO.: SS AM D23	500015. L102 230 West Mon	roe St. e 1840 60606

N.T.S.

230 W. Monroe Street, Suite 1840 Chicago, IL 60606

Legal Description

EXHIBIT "A" Legal Description

For APN/Parcel ID(s): 02-19-300-004 and 02-30-100-013

THE SOUTHEAST QUARTER OF THE SOUTHWEST QUARTER OF SECTION 19 AND THE EAST HALF OF THE NORTHWEST QUARTER OF SECTION 30, ALL IN TOWNSHIP 42 NORTH, RANGE 7 EAST OF THE THIRD PRINCIPAL MERIDIAN, (EXCEPTING THAT PART CONVEYED TO THE CHICAGO AND PACIFIC RAIL ROAD COMPANY BY DEED DATED SEPTEMBER 20, 1875 AND RECORDED MAY 11, 1878 IN BOOK 157, PAGE 284 AS DOCUMENT 5035) AND EXCEPTING THAT PART OF THE NORTHWEST QUARTER OF SECTION 30. TOWNSHIP 42 NORTH, RANGE 7 EAST OF THE THIRD PRINCIPAL MERIDIAN, DESCRIBED AS FOLLOWS: COMMENCING AT AN IRON STAKE MARKING THE NORTHEAST CORNER OF SAID NORTHWEST QUARTER: THENCE AZIMUTH 179 DEGREES 50 MINUTES 42 SECONDS (ASSUMED) ALONG AN EXISTING FENCE LINE, 2599.77 FEET TO THE NORTHERLY RIGHT OF WAY LINE OF U.S. ROUTE 20; THENCE AZIMUTH 270 DEGREES 11 MINUTES 35 SECONDS ALONG SAID NORTHERLY RIGHT OF WAY LINE 564.62 FEET TO AN IRON STAKE MARKING A POINT OF CURVATURE, SAID POINT BEING 32.88 FEET WESTERLY OF A CONCRETE RIGHT OF WAY MONUMENT; THENCE WESTERLY ALONG SAID NORTHERLY RIGHT OF WAY LINE AND A CURVE TO THE RIGHT OF RADIUS OF 1392.4 FEET AN ARC DISTANCE OF 309.79 FEET TO AN IRON STAKE FOR THE POINT OF BEGINNING; THENCE CONTINUING ALONG SAID NORTHERLY RIGHT OF WAY LINE ON A CURVE TO THE RIGHT OF RADIUS 1392.4 FEET AN ARC DISTANCE OF 390.25 FEET TO AN IRON STAKE; THENCE AZIMUTH 18 DEGREES 26 MINUTES 15 SECONDS, 71.39 FEET TO AN IRON STAKE; THENCE AZIMUTH 44 DEGREES 58 MINUTES 38 SECONDS, 156.01 FEET TO AN IRON STAKE; THENCE AZIMUTH 13 DEGREES 31 MINUTES 12 SECONDS, 138.08 FEET TO AN IRON STAKE; THENCE AZIMTUH 93 DEGREES 41 MINUTES 17 SECONDS, 64.98 FEET TO AN IRON STAKE; THENCE AZIMUTH 154 DEGREES 44 MINUTES 40 SECONDS, 317.98 FEET TO AN IRON STAKE; THENCE AZIMUTH 180 DEGREES 52 MINUTES 10 SECONDS. 159.78 FEET TO THE POINT OF BEGINNING. IN RUTLAND TOWNSHIP, KANE COUNTY, ILLINOIS, AND AN EASEMENT FOR INGRESS AND EGRESS 20 FEET IN WIDTH FOR THE BENEFIT OF THE ABOVE DESCRIBED PARCEL 1, DESCRIBED AS FOLLOWS: BEGINNING AT AN IRON STAKE AT THE SOUTHWEST CORNER OF SAID PARCEL 1; THENCE AZIMUTH 18 DEGREES 26 MINUTES 15 SECONDS ALONG THE WESTERLY LINE OF PARCEL 1, 71.39 FEET TO AN IRON STAKE; THENCE AZIMUTH 44 DEGREES 58 MINUTES 38 SECONDS ALONG THE WESTERLY LINE OF PARCEL 1, 156.01 FEET TO AN IRON STAKE; THENCE AZIMUTH 13 DEGREES 31 MINUTES 12 SECONDS ALONG THE WESTERLY LINE OF PARCEL 1, 105.0 FEET; THENCE AZIMUTH 283 DEGREES 31 MINUTES 12 SECONDS, 20.0 FEET; THENCE AZIMUTH 193 DEGREES 31 MINUTES 12 SECONDS, 99.37 FEET; THENCE AZIMUTH 224 DEGREES 68 MINUTES 38 SECONDS, 155.10 FEET; THENCE AZIMUTH 198 DEGREES 26 MINUTES 15 SECONDS, 72.22 FEET TO THE NORTHERLY RIGHT OF WAY LINE OF U.S. ROUTE 20; THENCE SOUTHEASTERLY ALONG SAID RIGHT OF WAY LINE ON A CURVE OF RADIUS 1392.4 FEET; CONCAVE TO THE NORTHEAST 20.28 FEET TO THE POINT OF BEGINNING), IN RUTLAND TOWNSHIP, KANE COUNTY, ILLINOIS.

This page is only a part of a 2016 ALTA® Commitment for Title Insurance issued by Fidelity National Title Insurance Company. This Commitment is not valid without the Notice; the Commitment to Issue Policy; the Commitment Conditions; Schedule A; Schedule B, Part I-Requirements; Schedule B, Part II-Exceptions; and a counter-signature by the Company or its issuing agent that may be in electronic form.

Copyright American Land Title Association. All rights reserved.

The use of this Form (or any derivative thereof) is restricted to ALTA licensees and ALTA members in good standing as of the date of use. All other uses are prohibited. Reprinted under license from the American Land Title Association.

ALTA Commitment for Title Insurance (08/01/2016)

230 W. Monroe Street, Suite 1840 Chicago, IL 60606

Kane DuPage SWCD Land Use Opinion

Del Rivero, Giovani

From:	Del Rivero, Giovani
Sent:	Thursday, June 15, 2023 6:11 PM
То:	contact@kanedupageswd.org
Cc:	Jeremy Price
Subject:	Request for Land Use Opinion Report - Solar Project Highway 20
Attachments:	Land use opinion application - Highway 20_opt.pdf; Make A Payment - Receipt - Illinois_
	Kae Soil and Water Conservation District.pdf

Good afternoon,

I have attached our LUO Report Application for a proposed community solar farm in Kane County. The fee has been paid and receipt attached.

Please let me know if you need anything else for your review.

Thank you!

Gio Del Rivero

Project Manager - Planning, Permitting, & Licensing

230 W. Monroe Street, Suite 1840, Chicago, IL 60606 T 773.828.6788 | C 630.370.0017 | <u>gdelrivero@trccompanies.com</u> LinkedIn | <u>Twitter</u> | <u>TRCcompanies.com</u>

Land Use Opinion Report (LUO) Application

Petitioner:		Owner:		
Contact person:		Address:		
Address:		City, State, Zip:		
City, State, Zip:		Phone Number:		
Phone Number:				
Email: jprice@renewprop.com				
Please select: How would you like	e to receive a copy of the	LUO Report? Email 🗌	Mail 🗌	
Site Location		Type of Request		
Address:		Change in Zoning from to		
City, State, Zip:		Subdivision or Planne	ed Unit Development (PUD)	
Township(s) N Range(s) E Section(s)		Variance (Please describe fully on a separate sheet)		
Parcel Index Number(s):		Special Use Permit (P	lease describe on separate sheet)	
Site Information				
Permitting Unit of Government:	Permitting Unit of Government:		Hearing Date:	
Project Name:Tot		al Acres: Aera of Disturbance:		
Current Use of Site:				
Proposed Improvements (Check	all that apply)			
Dwellings with Basements	Parking Lots	Commercial Buildings	Common Open Space	
Dwellings without Basements	Roads and Streets	Utility Structures	X Other	
Stormwater Treatment				
Drainage Ditches or Swales	Dry Detention Basins	No Detention Facili	ties Proposed	
Storm Sewers	Wet Detention Basins	6 Other		
Water Supply	Wastewater Treatment			
Individual Wells	Septic System	Other		
Community Water	Sewers			
Required: Include One Copy of E MAIL TO: 2315 DEAN ST. SUITE 1 Application (completed and si Fee (according to fee schedule Make Checks payable to Kane Plat of Survey showing legal d Site Plan/Drawings showing le Project Narrative with additio Location Map (if not on maps If Available- Not Required: Any applicable surveys including I (we) understand the filing of th and Water Conservation District	.00, ST. CHARLES, IL 6017 igned) e on back) -DuPage Soil and Water C lescription, legal measurn ots, storm water detentio nal details on the propos above) include distances wetland deliniation, deta is application allows the	5 Conservation District nents on areas, open areas, streed ed use, including total area from major roadways or to iled soil survey, topograph authorized representative	ts etc. a of ground disturbance ax parcel numbers ic survey etc.	
Petitioner or Authorized Agent		Date	e	
LUO # Natural Resour	FOR OFFICE		Date all rec'd	

 Date Due ______ Fee Due \$______ Refund Due ______ Check #______

 The opinion will be issued on a nondiscriminatory basis without regard to race, color, religion, sex, age, marital status, handicap, or national origin.

 Effective July 1, 2020

DEPARTMENT OF THE ARMY

CHICAGO DISTRICT, CORPS OF ENGINEERS 231 SOUTH LA SALLE STREET CHICAGO, ILLINOIS 60604-1437

REPLY TO ATTENTION OF:

January 30, 2023

Operations Division Regulatory Branch LRC-2022-00768

SUBJECT: Jurisdictional Determination for the Highway 20 Solar Project in Hampshire, Kane County, Illinois (Latitude 42.092835, Longitude -88.463981)

Stephanie Loucas Renewable Properties, LLC 879 Sanchez Street San Francisco, California 94114

Dear Ms. Loucas :

This is in response to your request that the U.S. Army Corps of Engineers complete a jurisdictional determination for the above-referenced site submitted on your behalf by SWCA Environmental Consultants. The subject project has been assigned number LRC-2022-00768. Please reference this number in all future correspondence concerning this project.

Following a review of the information you submitted, this office has determined that there are no waterways, wetlands or other areas considered "waters of the United States" under Corps of Engineers jurisdiction at the site.

Wetlands WD001 & WD002 have been determined to be isolated and therefore not subject to Federal regulation. Please be informed that this office does not concur with the boundaries of waters not under the jurisdiction of this office.

For a detailed description of our determination please refer to the enclosed decision document. This determination covers only your project as depicted in the Wetland and Waterbody Delineation Report dated September 2022, prepared by SWCA Environmental Consultants.

This determination is valid for a period of five (5) years from the date of the letter, unless new information warrants revision of the determination before the expiration date or a District Commander has identified, after public notice and comment, that specific geographic areas with rapidly changing environmental conditions merit re-verification on a more frequent basis.

This letter is considered an approved jurisdictional determination for your subject site. If you object to this determination, you may appeal, according to 33 CFR Part 331. Enclosed you will find a Notification of Appeal Process (NAP) fact sheet and a Request for Appeal (RFA) form. If you request to appeal the above determination, you must submit a completed RFA form to the Great Lakes/Ohio River Division Office at the following address:

Regulatory Appeals Review Officer US Army Corps of Engineers Great Lakes and Ohio River Division 550 Main Street, Room 10-714 Cincinnati, Ohio 45202-3222 Phone: (513) 684-2699 Fax: (513) 684-2460

In order to be accepted, your RFA must be complete, meet the criteria for appeal and be received by the Division Office within sixty (60) days of the date of the NAP, which is March 30, 2023. If you concur with the determination in this letter, submittal of the RFA form to the Division office is not necessary.

This determination has been conducted to identify the limits of the Corps Clean Water Act jurisdiction for the particular site identified in this request. This determination may not be valid for the wetland conservation provisions of the Food Security Act of 1985, as amended. If you or your tenant are USDA program participants, or anticipate participation in USDA programs, you should request a certified wetland determination from the local office of the Natural Resources Conservation Service prior to starting work.

It is your responsibility to obtain any required state, county, or local approvals for impacts to wetland areas not under the Department of the Army jurisdiction. In Kane County, please note that isolated non-waters of the United States not under the jurisdiction of the U.S. Army Corps of Commanders are regulated by the Kane County Stormwater Ordinance. For projects in incorporated areas of Kane County, contact the certified community for information related to the ordinance. For projects in unincorporated areas of Kane County, contact the Kane County Department of Environmental Management at (630) 208-3179.

Pursuant to Section 404 of the Clean Water Act, the U.S. Army Corps of Engineers regulates the discharge of dredged or fill material into waters of the United States, including wetlands. A Department of the Army permit is required for any proposed work involving the discharge of dredged or fill material within the jurisdiction of this office. To initiate the permit process, please submit a joint permit application form along with detailed plans of the proposed work. Information concerning our program, including the application form and an application checklist, can be found at and downloaded from our website: http://www.lrc.usace.army.mil/Missions/Regulatory.aspx

If you have any questions, please contact Mr. Michael J. Machalek of my staff by telephone at (312) 846-5534 or email at Mike.J.Machalek@usace.army.mil.

Sincerely,

Michael J Machalek

Michael J. Machalek Senior Project Manager Regulatory Branch

Enclosures

Copy Furnished w/out Enclosures

Kane County Division of Environmental Management (Jodie Wollnik) TRC Environmental Corporation (Gio Del Rivero) Wetland and Waterbody Delineation Report for the Illinois Route 20 Solar Project, Kane County, Illinois

SEPTEMBER 2022

PREPARED FOR

Wildcat Renewables, LLC

PREPARED BY

SWCA Environmental Consultants

WETLAND AND WATERBODY DELINEATION REPORT FOR THE ILLINOIS ROUTE 20 SOLAR PROJECT, KANE COUNTY, ILLINOIS

Prepared for

Wildcat Renewables, LLC 879 Sanchez Street San Francisco, California 94114

Prepared by

SWCA Environmental Consultants 200 West 22nd Street, Suite 220 Lombard, Illinois 60148 (630) 599-3022 www.swca.com

SWCA Project No. 74880

September 2022

CONTENTS

1	Introducti	on2						
2	Methodology							
	2.1 Desktop Analysis							
		Delineation						
3	Results							
	3.1 Desk	top Analysis						
	3.1.1	Landscape Setting						
	3.1.2	Vegetation7						
	3.1.3	Soils						
	3.1.4	Hydrology						
	3.1.5	National Wetlands Inventory						
	3.1.6	National Hydrography Dataset						
	3.1.7	Kane County ADID						
	3.1.8	Farmed Wetland Determination						
	3.2 Field	Delineation						
	3.2.1	Wetlands						
4	Conclusion	ns						
5	Literature	Cited 14						

Appendices

Appendix A. Farmed Wetland EvaluationAppendix B. USACE Wetland Determination Data FormsAppendix C. Floristic Quality IndexAppendix D. Photographs

Tables

Table 1. Soil Map Units within the Study Area, Kane County, Illinois	7
Table 2. Rainfall Summary for Kane County, Illinois, August 2022	. 10
Table 3. Wetlands Identified within the Illinois Route 20 Solar Study Area, Kane County, Illinois	11

Figures

Figure 1. Location map for the Illinois Route 20 Solar Project, Kane County, Illinois, 2022	3
Figure 2. Aerial location map for the Illinois Route 20 Solar Project, Kane County, Illinois, 2022	ł
Figure 3. Aquatic resources map for the Illinois Route 20 Solar Project, Kane County, Illinois,	
2022	3
Figure 4. NRCS soil locations within the Illinois Route 20 Solar Project, Kane County, Illinois,	
2022)
Figure 5. Water Resources Delineation Map for the Illinois Route 20 Solar Project, Kane County,	
Illinois, 2022	2

1 INTRODUCTION

On behalf of Wildcat Renewables, LLC (Wildcat), SWCA Environmental Consultants (SWCA) has prepared this wetland and waterbody delineation report for the Illinois Route 20 Solar Project (project) located in unincorporated Kane County, Illinois. The Study Area is approximately 75.65 acres (Figures 1 and 2).

This report provides the methods, results, and conclusions of a wetland and waterbody delineation conducted on August 31, 2022. The objectives of this survey were to identify and evaluate potentially jurisdictional wetlands and other waters within the Study Area that may be subject to U.S. Army Corps of Engineers (USACE) and Kane County jurisdiction under Section 404 of the Clean Water Act and/or county regulations. Fieldwork was performed by Megan O'Loughlin, who is a trained delineator with experience in the Northcentral and Northeast region.

2 METHODOLOGY

In accordance with USACE methodology outlined in the *Corps of Engineers Wetlands Delineation Manual* (1987 Manual) (USACE 1987) and the *Regional Supplement to the Corps of Engineers Wetlands Delineation Manual: Northcentral and Northeast Region* (Regional Supplement) (USACE 2012), wetlands and other waters were identified and approximated through the combined use of existing publicly available baseline data and field delineation as described below.

2.1 Desktop Analysis

The following publicly available data sources were used to complete a desktop analysis of the Study Area to assess the likelihood of wetlands and other waters being present:

- Current and historical aerial imagery
- Federal Emergency Management Agency (FEMA) National Flood Hazard Layer mapping (FEMA 2022)
- National Land Cover Database (Multi-Resolution Land Characteristics Consortium 2019)
- Natural Resources Conservation Service (NRCS) Web Soil Survey (NRCS 2022)
- U.S. Fish and Wildlife Service (USFWS) National Wetlands Inventory (NWI) mapping (USFWS 2022)
- Kane County Advanced Identification of Wetlands (ADID) (Kane County 2022)
- U.S. Geological Survey (USGS) National Hydrography Dataset (NHD) (USGS 2020)

The results of the desktop analysis were used to identify the likely locations of wetlands and waterbodies for the field delineation.

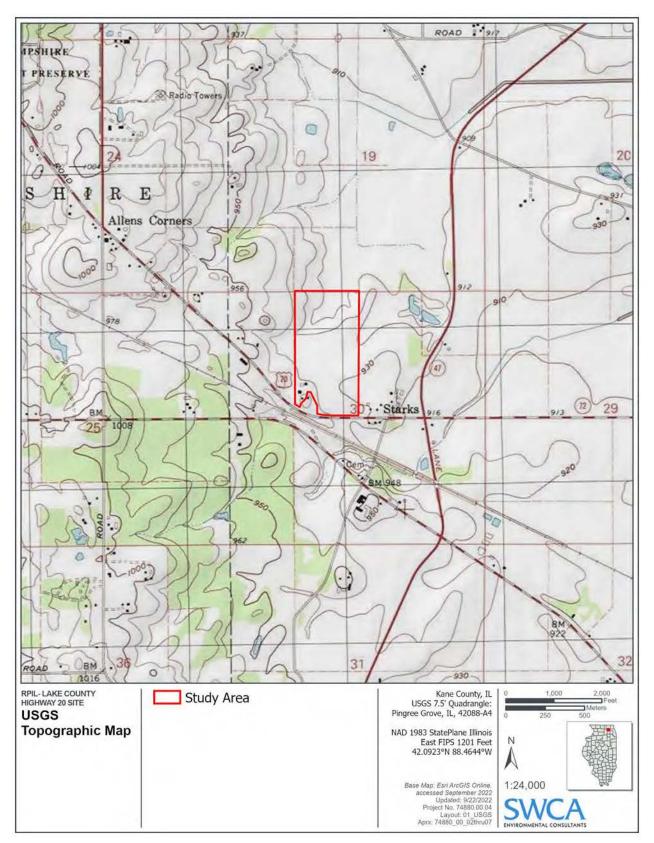


Figure 1. Location map for the Illinois Route 20 Solar Project, Kane County, Illinois, 2022.

Figure 2. Aerial location map for the Illinois Route 20 Solar Project, Kane County, Illinois, 2022.

2.2 Field Delineation

SWCA conducted a field delineation on August 31, 2022, to determine the presence or absence of wetlands and other waters in accordance with guidance and information available from the following sources:

- 1987 Manual (USACE 1987)
- Regional Supplement (USACE 2012)
- Field Indicators of Hydric Soils in the United States (Version 8.2) (NRCS 2018)
- Clean Water Act Jurisdiction Following the U.S. Supreme Court's Decision in Rapanos v. United States and Carabell v. United States (U.S. Environmental Protection Agency 2008)
- USACE Regulatory Guidance Letter 05-05: Ordinary High Water Mark Identification (USACE 2005)

The presence or absence of wetlands was determined in the field using routine determination methods outlined in the 1987 Manual and Regional Supplement (USACE 1987, 2012). Wetlands were identified by positive indicators of hydrology, hydrophytic vegetation, and hydric soils. Under normal conditions, all three parameters must be present for an area to be considered a wetland in accordance with Section 404 of the Clean Water Act. Wetland indicator data were collected at specified data points within the Study Area, which were used to approximate the wetland boundary and were recorded on USACE Northcentral and Northeast Region wetland determination data forms. Wetland boundaries were recorded using global positioning system (GPS) units capable of submeter accuracy.

For each wetland area, a Floristic Quality Assessment was conducted to determine the quality of the plant community and whether any wetlands within the Study Area meet the definition of a high quality aquatic resource according to the 2017 USACE Chicago District Regional Permit Program. Plant species in each wetland were noted to obtain the Floristic Quality Index (FQI) and native mean coefficient of conservatism (C-value). C-values ranging from 0 to 10 were assigned to native plants as listed in *Flora of the Chicago Region* (Wilhelm and Rericha 2017). A native mean C-value was calculated using the Chicago Region Floristic Quality Assessment Calculator to assess native vegetative quality (Herman et al. 2017). A native species FQI was calculated by multiplying the native mean C-value by the square root of the number of observed native species. Native FQI values range from 0 to 60. Wetlands with a FQI of 20 or greater or native mean C-value of 3.5 or greater are considered high quality aquatic resources, which warrant special protection under the 2017 USACE Chicago District Regional Permit Program.

Wetland hydrology was primarily determined in the field by considering the frequency and duration of inundation, visual observation of saturation in the upper 16 inches of the soil profile, and the presence of primary wetland hydrologic indicators (e.g., oxidized rhizospheres on living roots, water-stained leaves, water marks, sediment deposits, or algal matting). Secondary indicators used to determine wetland hydrology include, but are not limited to, surface soil cracks, crayfish burrows, geomorphic position, and drainage patterns. Evidence of these secondary indicators is present even during dry periods, and therefore they are useful indicators of a wetland. If the area sampled displayed one or more primary hydrologic indicators or two or more secondary hydrologic indicators as listed in the 1987 Manual and Regional Supplement, a positive wetland hydrology determination was made (USACE 1987, 2012).

Rainfall has a substantial influence on maintaining wetland hydrology. Therefore, it is important to accurately evaluate the normality of rainfall with respect to its influence on wetland hydrology. This was done by employing the Direct Antecedent Rainfall Evaluation Method (DAREM) (Sprecher and Warne

2000). Using the Applied Climate Information System Wetland Evaluation Tables (WETs) (Applied Climate Information System 2022) as a baseline of normal rainfall, the DAREM method was applied to assess rainfall by considering the 3-month period prior to the month of the field delineation. Evaluation under these methods classified the condition of the site at the time of the delineation as either drier than normal, normal, or wetter than normal.

Vegetation within each sample plot was identified to the species level, when possible, to identify the plant communities present. Hydrophytic vegetation is defined as a plant community with over 50% of the dominant plant species with wetland indicator statuses of as obligate wetland (OBL), facultative wetland (FACW), or facultative (FAC) as recorded in the National Wetland Plant List: Northcentral and Northeast Region (USACE 2020). The appropriate wetland indicator status was assigned to each plant species. The absolute cover of each plant species within the plot area (i.e., 2-meter [m] radius for the herbaceous vegetation stratum, 5-m radius for shrub/vine strata, and 15-m radius for the tree stratum) was visually estimated, and then the absolute percent cover was calculated (e.g., each species may be rated up to 100% and the total can be over 100% cover). Then, either the rapid test (i.e., all dominant species across all strata are OBL or FACW), the dominance test (i.e., 50/20 test; >50% of the total cover represented by plant species combined and including any species >20% of cover by itself, across all strata are rated OBL, FACW, or FAC), or the prevalence index (i.e., average value of wetland indicator statuses [OBL = 1...UPL = 5] of all species in the plot, weighted by percent cover, is less than or equal to 3.0) was used to determine the presence or absence of hydrophytic vegetation.

For each data point recorded, a soil test pit was dug to determine the presence or absence of hydric soil conditions. As defined by the National Technical Committee of Hydric Soils, a hydric soil is a "soil that formed under the conditions of saturation, flooding, or ponding long enough during the growing season to develop anaerobic conditions in the upper part" (NRCS 2015). Common indicators for non-sandy soils as per the USACE's manuals (USACE 1987, 2012) include the presence of organic soils, histic epipedon, hydrogen sulfide odor, reduced soil conditions, gleyed soils, or listing on the hydric soils lists. Hydric soil determinations were made according to criteria listed in the Regional Supplement and *Field Indicators of Hydric Soils in the United States: (Version 8.2)* (NRCS 2018).

Areas meeting the indicators of hydrology, hydrophytic vegetation, and hydric soils were then classified according to the Cowardin system, as described in *Classification of Wetlands and Deepwater Habitats of the United States* (Cowardin et al. 1979). This is a hierarchical system based on the topographic position and vegetation type of a wetland, which aids resource managers and others by providing uniformity of concepts and terms used to define wetlands according to hydrologic, geomorphologic, chemical, and biological factors.

Waterbodies (e.g., creeks, rivers, ditches, ponds) were identified by the presence of an ordinary highwater mark (OHWM), which is usually identifiable by indicators such as the level of water present, scouring of the channel, or a vegetation line within the channel (USACE 2005). The OHWM is a defining element for identifying the lateral jurisdictional limits of non-wetland waters. The OHWMs of waterbodies encountered during the wetland delineation were recorded using GPS units capable of submeter accuracy. Streams were further classified as perennial, intermittent, or ephemeral based on field observations.

3 RESULTS

The following sections summarize the vegetative communities, soils, hydrology, and classification of wetlands and waterbodies within the Study Area, as identified in publicly available data sources.

3.1 Desktop Analysis

3.1.1 Landscape Setting

Topography within the Study Area slopes north with the elevation ranging from 277 to 290 m above mean sea level. A review of the FEMA National Flood Hazard Layer (FEMA 2022) indicates the absence of flood hazard areas within the Study Area (Figure 3).

3.1.2 Vegetation

A review of the National Land Cover Database (Multi-Resolution Land Characteristics Consortium 2019) indicates that land cover within the Study Area consists primarily of cultivated crops. The Study Area also contains areas identified as hay/pasture and developed (low intensity, medium intensity).

3.1.3 Soils

Eight soil map units are present within the Study Area (Figure 4, Table 1) according to the NRCS (2022).

Brenton silt loam, 0 to 2 percent slopes Casco loam, 4 to 6 percent slopes, eroded	No
	No
Casco loam, 6 to 12 percent slopes, eroded	No
Dresden silt loam, 2 to 4 percent slopes	No
Fox silt loam, 2 to 4 percent slopes	No
Fox silt loam, 4 to 6 percent slopes, eroded	No
Fox loam, 6 to 12 percent slopes, eroded	No
Will loam, 0 to 2 percent slopes	Yes
-	eroded Dresden silt Ioam, 2 to 4 percent slopes Fox silt Ioam, 2 to 4 percent slopes Fox silt Ioam, 4 to 6 percent slopes, eroded Fox Ioam, 6 to 12 percent slopes, eroded

Table 1. Soil Map Units within the Study Area, Kane County, Illinois

Source: NRCS (2022).

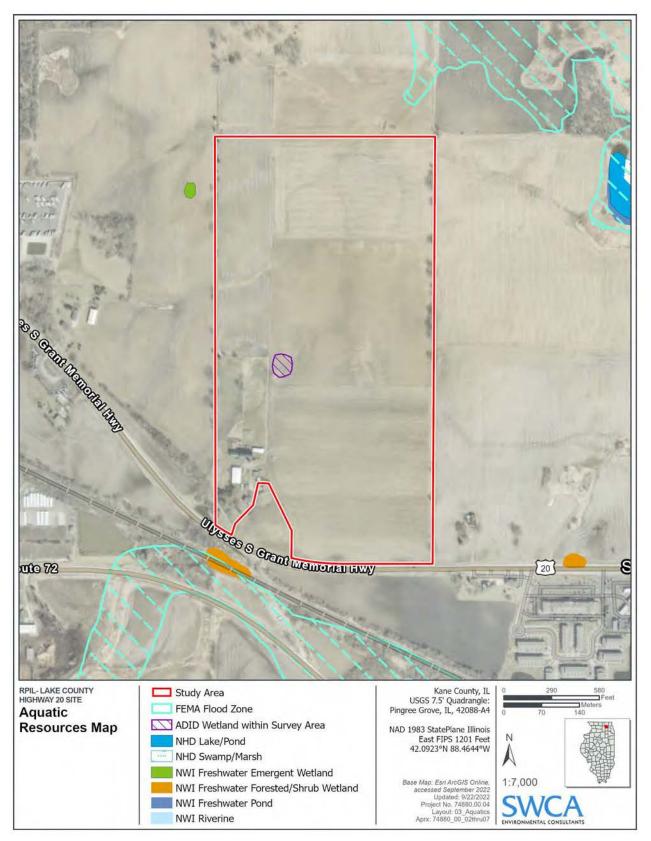


Figure 3. Aquatic resources map for the Illinois Route 20 Solar Project, Kane County, Illinois, 2022.

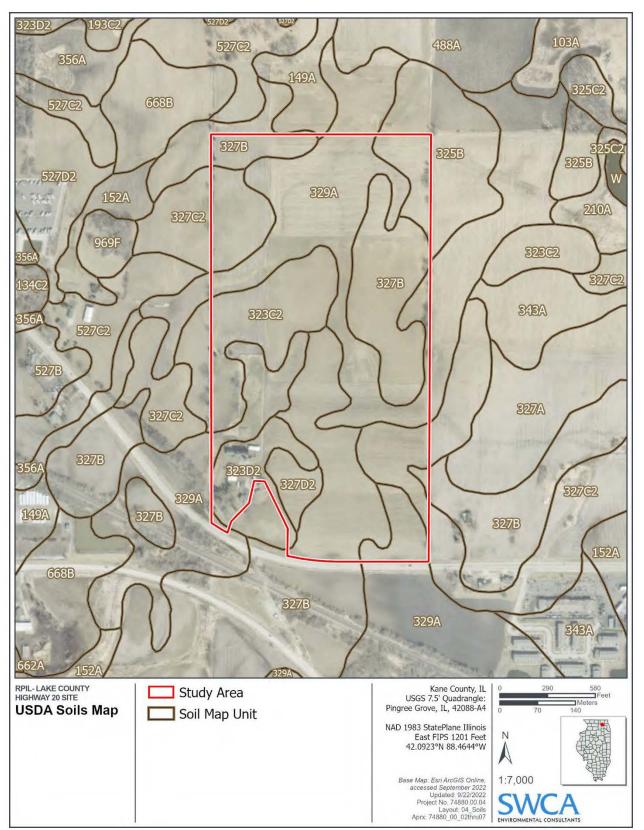


Figure 4. NRCS soil locations within the Illinois Route 20 Solar Project, Kane County, Illinois, 2022.

3.1.4 Hydrology

Precipitation data from the National Weather Service's Elgin (Kane County), Illinois, station, which is approximately 9.2 miles southeast of the Study Area, was used to determine the baseline of normal rainfall over the Study Area in May, June, and July 2022 (Applied Climate Information System 2022). This was compared with the DAREM calculations data for Kane County, Illinois, for the 3 months prior to the field survey The DAREM calculations for the 3 months prior to the survey were calculated using observed rainfall data and comparative WETS data (Table 2). Based on these calculations, the 3-month time period prior to the field survey in August 2022 was found to have normal precipitation patterns.

Prior Month	WETS Rainfa (inc	all Percentile hes)	Measured Rainfall — (inches) –	Evaluation Month: August 2022				
	30th 70th		(incres)	Condition ^a	Month Weight ^ь	Score ^c		
July	2.65	4.65	9.30	3	3	6		
June	2.99	5.48	2.74	1	2	2		
May	3.23	6.02	5.73	2	1	2		
					Total:	10		
Description					Norm	al		

Table 2. Rainfall Summary for Kane County, Illinois, August 2022

Source: Applied Climate Information System (2022).

^a Condition values are 1 for <30th percentile, 2 for between 30th and 70th percentile, 3 for >70th percentile.

^b Month weight is 3 for the most recent month prior, 2 for the second month prior, and 1 for the third month prior.

° Score is the product of the condition and month weight.

^d Description: Drier than normal (sum is 6–9), normal (sum is 10–14), wetter than normal (sum is 15–18)

3.1.5 National Wetlands Inventory

SWCA reviewed the USFWS NWI mapping data to determine the potential presence of wetland features within the Study Area (USFWS 2022). NWI wetlands are classified according to the Cowardin system, as described in *Classification of Wetlands and Deepwater Habitats of the United States* (Cowardin et al. 1979). NWI data suggests the absence of wetlands within the Study Area (see Figure 3).

3.1.6 National Hydrography Dataset

SWCA reviewed USGS NHD mapping to determine the potential presence of streams and waterbodies within the Study Area (USGS 2020). NHD data suggests the absence of features within the Study Area (see Figure 3).

3.1.7 Kane County ADID

SWCA reviewed the Kane County ADID mapping data to determine the potential presence of wetland features within the Study Area (Kane County 2022). Kane County data suggests the presence of one NRCS farmed wetland within the Study Area (see Figure 3).

3.1.8 Farmed Wetland Determination

The Study Area consists primarily of agricultural land. SWCA reviewed aerial photographs from one wet year (2020) and the available four years with normal precipitation patterns (2015, 2009, 2007, 2006) to determine if wet signatures were consistently present within the Study Area for at least 3 normal precipitation years. Designation of an area on the NWI map also constitutes 1 year of wetland signature. Presence of a mapped NRCS certified farmed wetland feature on the Kane County ADID map designates an area as a farmed wetland (Kane County 2022, Kane County 2004). As a result of this review, SWCA identified one farmed wetland signature within the Study Area (Table 3; see Appendix A).

3.2 Field Delineation

SWCA conducted the field delineation on August 31, 2022, to assess the general site characteristics, ground-truth any mapped features identified during the desktop analysis, assess the likelihood of wetland presence in areas mapped as hydric soils, and delineate the boundaries of all features determined to be present. Wetland delineation data sheets are provided in Appendix B. The FQI for each wetland is provided in Appendix C. Photographs of the delineated features are provided in Appendix D.

3.2.1 Wetlands

SWCA delineated two palustrine emergent (PEM) wetlands, totaling 0.49 acres within the Study Area (Figure 5; see Table 3).

Feature ID	Preliminary Jurisdictional Status*	Classification	Acreage within Study Area	Native Mean C-Value	Native FQI	Kane County Wetland Buffer [†]
WD001	Kane County	PEM	0.18	0.33	0.58	50 feet
$WD002^{\ddagger}$	Kane County	PEM	0.31	N/A	N/A	50 feet
Total PEM			0.49			

Table 3. Wetlands Identified within the Illinois Route 20 Solar Study Area, Kane County, Illinois

Note: PEM = palustrine emergent

* This determination is SWCA's professional opinion. A jurisdictional determination through Kane County and USACE will be required to determine the official jurisdictional status of each feature.

[‡]Denotes farmed wetland.

Figure 5. Water Resources Delineation Map for the Illinois Route 20 Solar Project, Kane County, Illinois, 2022.

3.2.1.1 VEGETATION COMMUNITIES

Mapped land cover types within the Study Area were verified as generally accurate during the field delineation. SWCA observed two vegetation community types within the Study Area including one wetland community types (i.e., PEM) and one non-wetland/upland community types (i.e., agricultural). The species identified at each data point along with their areal coverage are recorded on the data forms in Appendix B. A photographic log of the wetland communities observed within the Study Area is provided in Appendix D. The dominant species identified within each vegetation community type are listed in the following sections.

3.2.1.1.1 Palustrine Emergent Wetland

The PEM wetland community consists of a prevalence of hydrophytic non-woody vegetation and woody plants less than 1 m in height. The dominant herbaceous species include chufa (*Cyperus esculentus*).

3.2.1.1.2 Agricultural Upland

The agricultural upland community consists of cultivated crops. Dominant herbaceous species include alfalfa (*Medicago sativa*), hairy crab grass (*Digitaria sanguinalis*), soybean (*Glycine max*), and yellow bristle grass (*Setaria pumila*).

3.2.1.2 HYDROLOGY

Primary wetland hydrology indicators observed in the Study Area include Algal Mat or Crust (B4). Secondary wetland hydrology indicators observed in the Study Area include Surface Soil Cracks (B6), Saturation Visible on Aerial Imagery (C9), Stunted or Stressed Plans (D1), Geomorphic Position (D2) and a positive FAC-Neutral Test (D5) (see Appendix B).

3.2.1.3 HYDRIC SOIL INDICATORS

Hydric soil indicators observed in the Study Area include Redox Dark Surface (F6) and Depleted Dark Surface (F7) (see Appendix B).

4 CONCLUSIONS

SWCA conducted a field delineation of the Study Area on August 31, 2022. The SWCA wetland ecologist identified two wetlands. A summary of potential wetland jurisdiction status and buffer requirements for identified features is provided in Table 3.

The USACE Chicago District and Kane County have final authority in determining the status and presence of regulated waters and the extent of their boundaries. Any areas not meeting the definition of jurisdictional waters of the U.S. will be considered Isolated Waters, as defined in the Kane County Stormwater Management Ordinance (Kane County 2020).

5 LITERATURE CITED

- Applied Climate Information System. 2022. Wetlands Climate Evaluation Dataset (WETS) for Kane County, IL. National Oceanic and Atmospheric Administration Regional Climate Centers. Available at: http://agacis.rcc-acis.org/?fips=17089. Accessed September 2022.
- Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of Wetlands and Deepwater Habitats of the United States. Washington, D.C.: U.S. Fish and Wildlife Service, Office of Biological Services.
- Federal Emergency Management Agency (FEMA). 2022. National Flood Hazard Layer Viewer. Available at: https://hazards-fema.maps.arcgis.com/apps/webappviewer/index.html ?id=8b0adb51996444d4879338b5529aa9cd. Accessed September 2022.
- Herman, B., R. Sliwinski, and S. Whitaker. 2017. Chicago Region FQA (Floristic Quality Assessment) Calculator. Chicago, Illinois: U.S. Army Corps of Engineers. Available at: https://www.lrc.usace.army.mil/Missions/Regulatory/FQA.aspx. Access September 2022.
- Kane County. 2004. Advanced Identification (ADID) Study Kane County, Illinois. Available at: Methodology_Laura_August2004_pal.doc (countyofkane.org). Accessed September 2022.
 - 2020. Stormwater Management Ordinance. Available at: https://www.countyofkane.org/fder/documents/waterordinances/adoptedordinance.pdf. Accessed September 2022.
- 2022. KaneGIS3. Available at: https://kanegis.maps.arcgis.com/apps/webappviewer/index.html?id=4dbc1814d20c4f65b9a60b4a 6671d0cd. Accessed September 2022.
- Multi-Resolution Land Characteristics Consortium. 2019. National Land Cover Database 2019 CONUS Land Cover. Available at: https://www.mrlc.gov/viewer/. Accessed September 2022.
- Natural Resources Conservation Service (NRCS). 2015. Hydric Soils Definitions. Available at: http://www.nrcs.usda.gov/wps/portal/nrcs/detail/pr/soils/?cid=nrcs141p2_037283. Accessed September 2022.
 - ———. 2018. Field Indicators of Hydric Soils in the United States, Version 8.2. U.S. Department of Agriculture, Natural Resources Conservation Service in cooperation with the National Technical Committee for Hydric Soils.
 - ——. 2022. Web Soil Survey. Available at: https://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx. Accessed September 2022.
- Sprecher, S.W., and A.G. Warne. 2000. Accessing and Using Meteorological Data to Evaluate Wetland Hydrology. ERDC/EL TR-WRAP-00-01. Vicksburg, Mississippi: U.S. Army Engineer Research and Development Center.
- U.S. Army Corps of Engineers (USACE). 1987. Corps of Engineers Wetlands Delineation Manual. Technical Report Y-87-1. Vicksburg, Mississippi: U.S. Army Engineers Waterways Experiment Station Environmental Laboratory.

- —. 2005. USACE Regulatory Guidance Letter 05-05: Ordinary High Water Mark Identification. Available at: https://www.nap.usace.army.mil/Portals/39/docs/regulatory/rgls/rgl05-05.pdf. Accessed September 2022.
- ------. 2012. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Northcentral and Northeast Region. ERDC/EL TR-10-16. Vicksburg, Mississippi: U.S. Army Engineer Research and Development Center.
 - ----. 2020. National Wetland Plant List, version 3.5. Available at: https://cwbi-app.sec.usace.army.mil/nwpl_static/v34/home/home.html. Accessed September 2022.
- U.S. Environmental Protection Agency. 2008. Clean Water Act Jurisdiction Following the U.S. Supreme Court's Decision in Rapanos v. United States and Carabell v. United States. Available at: https://www.epa.gov/sites/default/files/2016-02/documents/cwa_jurisdiction_following_rapanos120208.pdf. Accessed September 2022.
- U.S. Fish and Wildlife Service (USFWS). 2022. National Wetlands Inventory. Available at: https://fwsprimary.wim.usgs.gov/wetlands/apps/wetlands-mapper/. Accessed September 2022.
- U.S. Geological Survey (USGS). 2020. The National Map Download (v2.0): National Hydrography Dataset. Available at: https://apps.nationalmap.gov/downloader/#/. Accessed September 2022.
- Wilhelm, G. and L., Rericha. 2017. Flora of the Chicago Region. A Floristic and Ecological Synthesis. Indiana Academy of Science, Indianapolis.

APPENDIX A

Farmed Wetland Evaluation

CLIMATIC EVALUATION OF PRECIPITATION

Weather Station: Elgin

	Average	<30%	>30%
Jan	1.84	1.19	2.22
February	1.64	0.88	2
March	2.27	1.38	2.75
April	3.91	2.83	4.61
May	5	3.23	6.02
June	4.56	2.99	5.48
July	3.89	2.65	4.65
August	4.4	2.93	5.27
September	3.49	2.03	4.24

DATE: 8/29/2022 COUNTY: Kane Project No. 74880 PREPARED BY: Megan O'Loughlin

Evaluation Date	March Precipitation	Type of Month	April Precipitation	Type of Month	May Precipitation	Type of Month	March Score 1X	April Score 2X	May Score 3X	Score for Year	Type of Year
Jun-20	3.69	Wet	5.06	Wet	8.9	Wet	3	6	9	18	WET
Evaluation Date	February Precipitation	Type of Month	March Precipitation	Type of Month	April Precipitation	Type of Month	February Score 1X	March Score 2X	April Score 3X	Score for Year	Type of Year
May-15	1.45	Normal	1.28	Dry	3.14	Normal	2	2	6	10	NORMAL
Evaluation Date	July Precipitation	Type of Month	August Precipitation	Type of Month	September Precipitation	Type of Month	July Score 1X	August Score 2X	September Score 3X	Score for Year	Type of Year
Oct-09	2.44	Dry	6.57	Wet	0.7	Dry	1	6	3	10	NORMAL
Evaluation Date	July Precipitation	Type of Month	August Precipitation	Type of Month	September Precipitation	Type of Month	July Score 1X	August Score 2X	September Score 3X	Score for Year	Type of Year
Oct-07	5.91	Wet	15.69	Wet	0.77	Dry	3	6	3	12	NORMAL
Evaluation Date	May Precipitation	Type of Month	June Precipitation	Type of Month	July Precipitation	Type of Month	May Score 1X	June Score 2X	July Score 3X	Score for Year	Type of Year
Aug-06	4.76	Normal	4.39	Normal	3.75	Normal	2	4	6	12	NORMAL
SCORE		ī.	1 2)	TYPE OF YE	AR						
	Dry =	1		Dry =	6 to 9						
	Normal =	2		Normal =	10 to 14						
	Wet =	3		Wet =	14 to 18						
COMMENT	'S:	Fifth norma	al year slide	was unavail	able. Missin	g data or w	etter than no	rmal precipi	tation was r	ecorded for	the
remaining	available Go	ogle aerial	slides.								

APPENDIX B

USACE Wetland Determination Data Forms

WETLAND DETERMINATION DATA FORM - Northcentral and Northeast Region

Project/Site: IL-20 Solar Project City	/County: Kane County Sampling Date: 08/31/2022					
Applicant/Owner: Wildcat Renewables	State: IL Sampling Point: DPD001_PEM					
	Section, Township, Range: Sec. 30 T42N R7E					
	I relief (concave, convex, none): <u>Concave</u> Slope (%): < <u>5%</u>					
Subregion (LRR or MLRA): MLRA 95B , LRR K Lat: 42.092	Long: -88.4651 Datum: NAD83					
Soil Map Unit Name: <u>329A</u> - Will Ioam, 0 to 2 percent slopes	NWI classification: No					
Are climatic / hydrologic conditions on the site typical for this time of year? Yes	<u>X</u> No(If no, explain in Remarks.)					
Are Vegetation, Soil, or Hydrologysignificantly distu	rbed? Are "Normal Circumstances" present? Yes <u>X</u> No					
Are Vegetation, Soil, or Hydrologynaturally problem						
SUMMARY OF FINDINGS — Attach site map showing samplin	ig point locations, transects, important features, etc.					
1474 44 44 46 101 11 11 111 111 111 111 111 111 111	Is the Sampled Area					
Hydrophytic Vegetation Present? Yes: X No:	within a Wetland? Yes X No					
Hydric Soil Present? Yes: X No:	Kura antional Matland Cita ID:					
Wetland Hydrology Present? Yes: X No:	If yes, optional Wetland Site ID:					
HYDROLOGY						
 Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) 	Moss Trim Lines (B16) Dry-Season Water Table (C2) dor (C1) Crayfish Burrows (C8) eres on Living Roots (C3) X Saturation Visible on Aerial Imagery (C9) ed Iron (C4) Stunted or Stressed Plants (D1) ion in Tilled Soils (C6) X GC7) Shallow Aquitard (D3)					
Field Observations: Surface Water Present? Yes No X Depth (inches): Water Table Present? Yes No X Depth (inches): Saturation Present? Yes No X Depth (inches): (includes capillary fringe) Yes No X Depth (inches):	Wetland Hydrology Present? Yes X No					
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previo	us inspections), if available:					
Remarks:						

VEGETATION - Use scientific names of plants.

Tree Stratum: (Plot size: 30) 1. 2. 3. 4.		Dominant Indicator Species? Status	Dominance Test worksheet: Number of Dominant Species That Are OBL, FACW, or FAC: 0 (A) Total Number of Dominant Species Across All Strata: 2 (B)
5 6	· · · · · · · · · · · · · · · · · · ·		Percent of Domant Species That Are OBL, FACW, or FAC: (A/B)
7	0	=Total Cover	Prevalence Index worksheet: Total % Cover of: Multiply by: OBL species 0 x 1 =
<u>Sapling/Shrub Stratum:</u> (Plot size: <u>15</u>) <u>1.</u>			FACW species 0 x 2 = 0 FAC species 0 x 3 = 0
2. 3. 4.			FACU species 25 x 4 = 100 UPL species 20 x 5 = 100 Column Totals: 45 (A) 200 (B)
4. 5. 6.			Prevalence Index = B/A= 4.44 Hydrophytic Vegetation Indicators:
7	0	=Total Cover	1 - Rapid test for Hydrophytic Vegetation 2 - Dominance Test is $>50\%$ 3 - Prevalence Index is $\leq 3.0^1$
<u>Herb Stratum:</u> (Plot size: <u>5</u>) 1. Digitaria sanguinalis	25	Y FACU	 4 - Morphological Adaptations¹ (Profice supporting data in Remarks or on a separate sheet) X Problematic Hydrophytic Vegetation (Explain)
<u>2. Medicago sativa</u> <u>3.</u> 4.	20	Y <u>UPL</u>	¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
5. 6. 7.			Definitions of Four Vegetation Strata: Tree – Woody plants 3 in. (7.6 cm) or more in diameter
8. 9.			at breast height (DBH), regardless of height. Sapling/Shrub – Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall.
10. 11. 12.			Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
Woody Vine Stratum: (Plot size: 30)	45	=Total Cover	Woody vine – All woody vines greater than 3.28 ft in height.
1. 2.	<u></u>		
3. 4.		=Total Cover	Hydrophytic Vegetation Present? Yes <u>X</u> No
Remarks: (Include photo numbers here or on a separate shee	t.) Farmed w		1

Northcentral and Northeast Region – Version 2.0

SOIL

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)									
Depth	Matrix		Red	Redox Features					
(inches)	Color (moist)	%	Color (moist)	%	_Type ¹	Loc ²	Texture		Remarks
0-16	10YR 3/1	90	10YR 5/2	10	D	М	Silty Clay Loam		
								2	
					·			ú	
	.				·		2	<u>.</u>	
					•			• <u>/</u>	6
								*	
				· · <u>· · · · · · · · · · · · · · · · · </u>				97 11	
				id.				5.	
								Î.	
¹ Type: C=Co	ncentration, D=Depleti	on, RM=Red	luced Matrix, MS=M	asked Sa	nd Grains.		² Location: PL=	Pore Lining, M	=Matrix.
Hydric Soil I	ndicators:						Indicato	ors for Probler	natic Hydric Soils ³ :
Histosol			Polyvalue		rface (S8) ((LRR R,	101 105		
CONTRACTOR OF A PROPERTY OF A	bipedon (A2) stic (A3)		MLRA 149 Thin Dark :		59) (LRR F	R, MLRA 1			ox (A16) (LRR K, L, R) or Peat (S3) (LRR K, L, R)
	n Sulfide (A4)		Loamy Mu			R K, L)	Dar	k Surface (S7)	(LRR K, L)
	l Layers (A5) l Below Dark Surface ((A11)	Loamy Gle						Surface (S8) (LRR K, L) (S9) (LRR K, L)
	ark Surface (A12)	()	Redox Dar	k Surface	(F6)		10		lasses (F12) (LRR K, L, R)
	lucky Mineral (S1)		X Depleted E				the car car as the		ain Soils (F19) (MLRA 149B)
the second	Bleyed Matrix (S4) tedox (S5)		Redox Dep	ressions	(F8)			sic Spodic (TA6 I Parent Materi	6) (MLRA 144A, 145, 149B) al (F21)
	Matrix (S6)								Surface (TF12)
Dark Su	rface (S7) (LRR R, ML	RA 149B)					Oth	er (Explain in F	Remarks)
³ Indicators of	f hydrophytic vegetatio	n and wetlar	nd hydrology must be	e present,	unless dis	turbed or	problematic.		
	.ayer (if observed):								
Type: Depth (inch	os).						Hydric Soil	Present?	Yes <u>X</u> No
Remarks:	esj.								
Remarks.									

WETLAND DETERMINATION DATA FORM - Northcentral and Northeast Region

Project/Site: IL-20 Solar Project City/0	County: Kane County	Sampling Date: <u>08/31/2022</u>			
Applicant/Owner: Wildcat Renewables	State: IL	_ Sampling Point: DPD002_UPL			
Investigator(s): M. O'LoughlinSec	ction, Township, Range: <u>Sec. 30 T42N</u>	R7E			
	relief (concave, convex, none): Conc	caveSlope (%): <5%			
Subregion (LRR or MLRA): MLRA 95B , LRR K Lat: 42.091776	6 Long: <u>-88.463419</u>	Datum: <u>NAD83</u>			
Soil Map Unit Name: <u>329A - Will Ioam, 0 to 2 percent slopes</u>		fication: No			
Are climatic / hydrologic conditions on the site typical for this time of year? Yes		n in Remarks.)			
Are Vegetation, Soil, or Hydrologysignificantly disturb		ices" present? Yes <u>X</u> No			
Are Vegetation, Soil, or Hydrologynaturally problema					
SUMMARY OF FINDINGS — Attach site map showing sampling	g point locations, transects, ir	nportant features, etc.			
	Is the Sampled Area				
Hydrophytic Vegetation Present? Yes: No:X	within a Wetland?	Yes <u>No X</u>			
Hydric Soil Present? Yes: No: X Wetland Hydrology Present? Yes: X No:	If yes, optional Wetland Site ID:				
Remarks: (Explain alternative procedures here or in a separate report.) Farmed the farmed wetland determination review. Therefore, this area does not meet th					
HYDROLOGY					
Wetland Hydrology Indicators:	Secondary	indicators (minimum of two required)			
Primary indicators (minimum of one required: check all that apply)	Surfac	ce Soil Cracks (B6)			
Surface Water (A1) Water-Stained Leave		Drainage Patterns (B10)			
High Water Table (A2) Aquatic Fauna (B13)	- 1000000200 -	Trim Lines (B16)			
Saturation (A3) Marl Deposits (B15)		eason Water Table (C2)			
Water Marks (B1) Hydrogen Sulfide Od Sediment Deposits (B2) Oxidized Rhizospher	· · · · · · · · · · · · · · · · · · ·	sh Burrows (C8) ation Visible on Aerial Imagery (C9)			
Drift Deposits (B3) Dresence of Reduced	6256 X402 V202 -	ed or Stressed Plants (D1)			
Algal Mat or Crust (B4) Recent Iron Reduction		orphic Position (D2)			
roson match or act (D) /	75, 50	w Aquitard (D3)			
Inundation Visible on Aerial Imagery (B7) Other (Explain in Rer		opographic Relief (D4)			
Sparsely Vegetated Concave Surface (B8)		Neutral Test (D5)			
Field Observations:					
Surface Water Present? Yes No _X _ Depth (inches):					
Water Table Present? Yes No <u>X</u> Depth (inches):					
Saturation Present? Yes No _X_ Depth (inches):	—				
(includes capillary fringe)	Wetland Hydrology Present	t? Yes <u>X</u> No			
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previou	us inspections), if available:				
Remarks:					

VEGETATION - Use scientific names of plants.

Tree Stratum: (Plot size: <u>30</u>)		Dominant Indicator Species? Status	Dominance Test worksheet:
1.	<u>/// Cover</u>	Species: Status	Number of Dominant Species That Are OBL, FACW, or FAC: 0 (A)
2.			
3.			Total Number of Dominant Species Across All Strata: 1 (B)
4.			
5.			Percent of Domant Species That Are OBL, FACW, or FAC: 0 (A/B)
6.			
7.		21// 25	Prevalence Index worksheet:
	0	=Total Cover	Total % Cover of: Multiply by:
			OBL species x 1 =
<u>Sapling/Shrub Stratum:</u> (Plot size: <u>15</u>)			FACW species x 2 =0
1.			FAC species $0 \times 3 = 0$
2.	<u> </u>		FACU species <u>10</u> x 4 = <u>40</u>
3.			UPL species x 5 =350
4.	44. J		Column Totals: <u>80</u> (A) <u>390</u> (B)
5.			Prevalence Index = B/A= 4.88
6.		20 <i>4</i> 20	Hydrophytic Vegetation Indicators:
7.			1 - Rapid test for Hydrophytic Vegetation
	0	=Total Cover	2 - Dominance Test is >50%
			3 - Prevalence Index is ≤3.0 ¹
<u>Herb Stratum:</u> (Plot size: <u>5</u>)			4 - Morphological Adaptations ¹ (Profice supporting
1. Medicago sativa	70	Y UPL	data in Remarks or on a separate sheet)
2. Digitaria sanguinalis	10	N FACU	Problematic Hydrophytic Vegetation (Explain)
3.			¹ Indicators of hydric soil and wetland hydrology must
4.	in c		be present, unless disturbed or problematic.
5.			
6.			Definitions of Four Vegetation Strata:
7.			Tree – Woody plants 3 in. (7.6 cm) or more in diameter
8.			at breast height (DBH), regardless of height.
9.	S	. <u></u>	Sapling/Shrub – Woody plants less than 3 in. DBH
10			and greater than or equal to 3.28 ft (1 m) tall.
<u>10.</u> 11.			Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
12.			
	80	=Total Cover	Woody vine – All woody vines greater than 3.28 ft in height.
	962 (K. C.)		
<u>Woody Vine Stratum:</u> (Plot size: <u>30</u>)			
<u>1</u> .	<u></u>	7	
2.			
3.			Hydrophytic
4.			Vegetation
	0	=Total Cover	Present? Yes No _X
Remarks: (Include photo numbers here or on a separate she	et.)	, ,	•

Northcentral and Northeast Region – Version 2.0

Profile Desc	ription: (Describe to	the depth	needed to document	t the indi	cator or co	onfirm the	e absence of in	dicators.)			
Depth	Matrix		Red	ox Featur	es						
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture		Remarks		
0-8	10YR 3/1	100		0			Silty Clay Loam				
8-16	10YR 3/1	90	10YR 4/3	5	С	М	Silty Clay Loam	š.			
8-16	10YR 3/1	90	10YR 5/2	5	D	M	Silty Clay Loam				
<u> </u>	· <u>·</u> ··································	<u> </u>	5	<u> </u>			<u>. </u>	č			7
s	e.	, /		1.0				ç.			
		· ·		•0	••	· · · · · ·		й			
							Pep. 27	hei			6
		· :	8	-				<u>,</u>			
		». — ;						<i>k</i>			
<u>.</u>		· ·	2	<u></u>	<u> </u>	·	<u>×</u>	<u></u>			
¹ Type: C=Co	ncentration, D=Deplet	ion, RM=Re	educed Matrix, MS=M	asked Sa	nd Grains.		² Location: PL=	Pore Lining, M	=Matrix.		
Hydric Soil I	Indicators:							ors for Problem			
Histosol	(A1) pipedon (A2)		Polyvalue MLRA 149		rface (S8)	(LRR R,		n Muck (A10) (ast Prairie Redo			
The second second	istic (A3)		Thin Dark	1000 C	S9) (LRR F	R, MLRA	An INSTRUMENTS AND THE OWNER OF THE OWNER	n Mucky Peato			
	en Sulfide (A4)		Loamy Mu			RK, L)		k Surface (S7)			- 13
	d Layers (A5) d Below Dark Surface	(A11)	Loamy Gle	150 an ann an				value Below S 1 Dark Surface			., L)
Thick Da	ark Surface (A12)		Redox Dar	rk Surface	e (F6)		Iron	-Manganese M	lasses (F12) (LRR I	ento no source
	Aucky Mineral (S1) Gleyed Matrix (S4)		Depleted [Redox Dep				200	dmont Floodpla sic Spodic (TA6			
Sandy R	Redox (S5)						Rec	l Parent Materi	al (F21)		,,
- S	l Matrix (S6) rface (S7) (L RR R, ML	RA 149B)						y Shallow Dark er (Explain in F		2)	
									tomarkay		
1005 40	f hydrophytic vegetatic	on and wetla	and hydrology must b	e present	, unless dis	sturbed or	problematic.				
Restrictive L Type:	_ayer (if observed):										
Depth (inch	es):						Hydric Soil	Present?	Yes	No _	X
Remarks: Re	edox was observed bel	low 8 inche	s and does not qualify	v as hydric	c soil.						

WETLAND DETERMINATION DATA FORM - Northcentral and Northeast Region

Project/Site: IL-20 Solar Project City/	County: Kane County	Sampling Date: 08/31/2022
Applicant/Owner: Wildcat Renewables	State: IL	Sampling Point: <u>DPD003_UPL</u>
Investigator(s):M. O'Loughlin Sec	ction, Township, Range: <u>Sec. 30 T42N</u>	R7E
Landform (hillslope, terrace, etc.): Swale Local	relief (concave, convex, none): Conc	aveSlope (%): _<5%
Subregion (LRR or MLRA): MLRA 95B , LRR K Lat: 42.09129	6Long: <u>-88.4631</u>	Datum: NAD83
Soil Map Unit Name: <u>329A - Will Ioam, 0 to 2 percent slopes</u>	NWI classit	fication: <u>No</u>
Are climatic / hydrologic conditions on the site typical for this time of year? Yes		n in Remarks.)
Are Vegetation, Soil, or Hydrologysignificantly distur		ces" present? Yes X No
Are Vegetation, Soil, or Hydrologynaturally problema		
SUMMARY OF FINDINGS — Attach site map showing samplin	g point locations, transects, ir	nportant features, etc.
	Is the Sampled Area	
Hydrophytic Vegetation Present? Yes: X No:	within a Wetland?	Yes No _X
Hydric Soil Present? Yes: No: X Wetland Hydrology Present? Yes: X No:	If yes, optional Wetland Site ID:	
Remarks: (Explain alternative procedures here or in a separate report.) Farmed the farmed wetland determination review. Therefore, this area does not meet the		
HYDROLOGY		
Wetland Hydrology Indicators:	Secondary_	indicators (minimum of two required)
Primary indicators (minimum of one required: check all that apply)	Surfac	e Soil Cracks (B6)
Surface Water (A1) Water-Stained Leave		ge Patterns (B10)
High Water Table (A2) Aquatic Fauna (B13)		Trim Lines (B16)
Saturation (A3) Marl Deposits (B15)		eason Water Table (C2)
Water Marks (B1) Hydrogen Sulfide Od Sediment Deposits (B2) Ovidized Phizospher		sh Burrows (C8) Ition Visible on Aerial Imageny (C9)
Sediment Deposits (B2) Oxidized Rhizospher Drift Deposits (B3) Presence of Reducer		tion Visible on Aerial Imagery (C9) d or Stressed Plants (D1)
		orphic Position (D2)
robust (B5) Thin Muck Surface (C	75, 50	w Aquitard (D3)
Inundation Visible on Aerial Imagery (B7) Other (Explain in Rer		opographic Relief (D4)
Sparsely Vegetated Concave Surface (B8)	X FAC-N	eutral Test (D5)
Field Observations:		
Surface Water Present? Yes No _X_ Depth (inches):		
Water Table Present? Yes No X Depth (inches):	—	
Saturation Present? Yes No X Depth (inches):		
(includes capillary fringe)	Wetland Hydrology Present	t? Yes <u>X</u> No
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previou	us inspections), if available:	
Remarks:		

VEGETATION - Use scientific names of plants.

<u>Tree Stratum:</u> (Plot size: <u>30</u>)		Dominant I		Dominance Test	worksheet:			
1.	% Cover	Species?	Sialus	Number of Domina That Are OBL, FA			2	(A)
2.				Total Number of D				
3.				Species Across Al		-	3	(B)
4.				Percent of Doman	t Snecies			
5.		0.		That Are OBL, FA			67	(A/B)
6.								
7.				Prevalence Index			1011211-001 - 70	
		=Total Cove	er	Total % Cov	5253	20 DI	ultiply by:	_
Sapling/Shrub Stratum: (Plot size: 15)				OBL species		×1= -	,	
				-10		x2= -	20 15	
<u>1.</u>				FAC species		x 3 = x 4 =	0	
2.	<u> </u>			UPL species		×5=	25	
3.		(_)		Column Totals:	20	(A) -	60	— (B)
<u>4.</u>	<u></u>			Prevalence In	61 - 1.811	<u></u>	15 100297	
5.				Prevalence in	uex - D/A -		3.00	_
<u>6.</u>				Hydrophytic Vege	etation Indic	ators:		
7				AND MERSONALLY COLD	st for Hydropl	Sens child - 22 - 2126	getation	
	0	=Total Cove	er	X 2 - Dominan				
					ce Index is ≤			
<u>Herb Stratum:</u> (Plot size: <u>5</u>)				and the second s	ogical Adapta			pporting
1. Panicum dichotomiflorum	10	<u> </u>	FACW		arks or on a s Hydrophytic			ain)
2. Glycine max	5	<u>Y</u>	UPL		nyulopnyuc	vegetau		<i>)</i>
3. Setaria pumila	5	<u> </u>	FAC	¹ Indicators of hydr				nust
4.			5	be present, unless	disturbed or	problem	natic.	
5	-			Definitions of Fo	our Vegetatio	n Strata	a:	
6.				Tree – Woody pla	nto Q in (7.6		oro in di	omotor
7.				at breast height (ameter
8.				Sapling/Shrub -	Woody plant	e loce th	on 3 in [лен
9.			3	and greater than				
<u>10.</u>				Herb – All herbac	eous (non-w	nodv) nla	ants rea:	ardless
<u>11.</u>			3	of size, and wood	y plants less	than 3.2	28 ft tall.	ausoo
<u>12.</u>	-			Woody vine – Al	woody vines	areater	than 3.2	8 ft in
	20	=Total Cove	er	height.		9.0000		
Woody Vine Stratum: (Plot size: <u>30</u>)								
1.								
2.								
3.	5			Hydrophytic				
4.				Vegetation				
	0	=Total Cove	er	Present?	Ì	Yes <u>X</u>	_ No _	
Remarks: (Include photo numbers here or on a separate sheet.))							

Profile Desc	ription: (Describe to	the depth n	eeded to document	t the indi	cator or co	onfirm the	e absence of in	dicators.)
Depth	Matrix			ox Featur				
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-15	10YR 3/1	100		0		<u> </u>	Silty Clay Loam	
15-16	10YR 3/1	80	10YR 4/1	20	D	M 	Silty Clay Loam	<u>.</u>
					- 1			H.
	()	; <u> </u>		-	-			
	15							-
	0. 			<u>.</u>				
. <u> </u>								<u>*</u>
				- 2	-			
-				-	-			
¹ Type: C=Cc	ncentration, D=Deplet	ion, RM=Re	duced Matrix, MS=M	asked Sa	and Grains.		² Location: PL=	=Pore Lining, M=Matrix.
Hydric Soil	Indicators:	<i>n</i> ,	52 5				Indicato	ors for Problematic Hydric Soils ³ :
Histosol			Polyvalue I		ırface (S8)	(LRR R,	2 ci	m Muck (A10) (LRR K, L, MLRA 149B)
	oipedon (A2) istic (A3)		MLRA 149 Thin Dark :	1.000 C	59) (I BB F			ast Prairie Redox (A16) (LRR K, L, R) m Mucky Peat or Peat (S3) (LRR K, L, R)
5	en Sulfide (A4)		Loamy Mu		a (a) (a) (a)	- E.	36 I C	rk Surface (S7) (LRR K, L)
(b) the state of the state o	d Layers (A5) d Below Dark Surface	(A 1 1)	Loamy Gle Depleted M					yvalue Below Surface (S8) (LRR K, L) n Dark Surface (S9) (LRR K, L)
	ark Surface (A12)	(~11)	Redox Dar					n-Manganese Masses (F12) (LRR K, L, R)
	Aucky Mineral (S1)		Depleted D				100 LC	dmont Floodplain Soils (F19) (MLRA 149B)
	Gleyed Matrix (S4) Redox (S5)		Redox Dep	ressions	i (F8)		10 10	sic Spodic (TA6) (MLRA 144A, 145, 149B) d Parent Material (F21)
States Stranger	Matrix (S6)							y Shallow Dark Surface (TF12)
Dark Su	rface (S7) (LRR R, MI	_RA 149B)					Oth	ner (Explain in Remarks)
³ Indicators o	f hydrophytic vegetatic	on and wetla	nd hydrology must be	e present	, unless dis	sturbed or	problematic.	
	_ayer (if observed):							
Type: Depth (inch	ee).						Hydric Soi	I Present? Yes <u>No X</u>
Remarks:								
Remarks.								

WETLAND DETERMINATION DATA FORM - Northcentral and Northeast Region

Project/Site: IL-20 Solar Project City/Co	ounty: Kane County Sampling Date: 08/31/2022
Applicant/Owner: Wildcat Renewables	State: IL Sampling Point DPD004_PEM
Investigator(s):M. O'Loughlin Sectio	n, Township, Range: <u>Sec. 30 T42N R7E</u>
Landform (hillslope, terrace, etc.): Depression Local re	lief (concave, convex, none): <u>Concave</u> Slope (%): <u><5%</u>
Subregion (LRR or MLRA): MLRA 95B , LRR K Lat: 42.09234	Long: -88.466137 Datum: NAD83
Soil Map Unit Name: <u>329A - Will Ioam, 0 to 2 percent slopes</u>	NWI classification: No
Are climatic / hydrologic conditions on the site typical for this time of year? Yes $_$	X No(If no, explain in Remarks.)
Are Vegetation, Soil, or Hydrologysignificantly disturbe	d? Are "Normal Circumstances" present? Yes <u>X</u> No
Are Vegetation, Soil, or Hydrologynaturally problematic	? (If needed, explain any answers in Remarks.)
SUMMARY OF FINDINGS — Attach site map showing sampling	point locations, transects, important features, etc.
Hydrophytic Vogotation Dracont? Voc: V No:	s the Sampled Area within a Wetland? Yes X No
Hydric Soil Present? Yes: X No:	a a a brze e avenue 2013
Wetland Hydrology Present? Yes: X No: I	f yes, optional Wetland Site ID:
HYDROLOGY	
Wetland Hydrology Indicators: Primary indicators (minimum of one required: check all that apply) Surface Water (A1) Water-Stained Leaves of Aquatic Fauna (B13) High Water Table (A2) Aquatic Fauna (B13) Saturation (A3) Marl Deposits (B15) Water Marks (B1) Hydrogen Sulfide Odor Sediment Deposits (B2) Oxidized Rhizospheres Drift Deposits (B3) Presence of Reduced In X Algal Mat or Crust (B4) Recent Iron Reduction Iron Deposits (B5) Thin Muck Surface (C7) Inundation Visible on Aerial Imagery (B7) Other (Explain in Remained Sparsely Vegetated Concave Surface (B8)	Moss Trim Lines (B16) Dry-Season Water Table (C2) (C1) Crayfish Burrows (C8) on Living Roots (C3) Saturation Visible on Aerial Imagery (C9) ron (C4) X in Tilled Soils (C6) X Geomorphic Position (D2) Shallow Aquitard (D3)
Field Observations: Surface Water Present? Yes No X Depth (inches):	— — — Wetland Hydrology Present? Yes <u>X</u> No
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous	inspections), if available:
Remarks:	

VEGETATION - Use scientific names of plants.

Tree Stratum: (Plot size: <u>30</u>)		Dominant Indicator Species? Status	Dominance Test worksheet:
1.	% Cover		Number of Dominant Species That Are OBL, FACW, or FAC: 1 (A)
2.		·	Total Number of Dominant
3.	÷		Species Across All Strata: 2 (B)
4.			Percent of Domant Species
5.			That Are OBL, FACW, or FAC: 50 (A/B)
<u>6.</u>	<u>.</u>		
7.		2	Prevalence Index worksheet:
	0	=Total Cover	Total % Cover of: Multiply by:
			OBL species <u>5</u> x 1 = <u>5</u>
<u>Sapling/Shrub Stratum:</u> (Plot size: <u>15</u>)			FACW species20 x 2 =40
1.			FAC species $0 \times 3 = 0$
2.			FACU species x 4 =80
3.		· · ·	UPL species x 5 =
4.	10 I		Column Totals: <u>45</u> (A) <u>125</u> (B)
5.			Prevalence Index = B/A= 2.78
6.			Understantin Mandating Indiantage
7.			Hydrophytic Vegetation Indicators: 1 - Rapid test for Hydrophytic Vegetation
	0	=Total Cover	2 - Dominance Test is >50%
			X 3 - Prevalence Index is $\leq 3.0^1$
<u>Herb Stratum:</u> (Plot size: <u>5</u>)			4 - Morphological Adaptations ¹ (Profice supporting
1. Portulaca oleracea	20	Y FACU	data in Remarks or on a separate sheet)
2. Cyperus esculentus	15	Y FACW	Problematic Hydrophytic Vegetation (Explain)
3. Panicum dichotomiflorum	5	N FACW	¹ Indicators of hydric soil and wetland hydrology must
4. Amaranthus tuberculatus	5	N OBL	be present, unless disturbed or problematic.
5.			
<u>5.</u> 6.			Definitions of Four Vegetation Strata:
7.	<u></u>		Tree – Woody plants 3 in. (7.6 cm) or more in diameter
7. 8.		·???	at breast height (DBH), regardless of height.
<u>o.</u> 9.	2		Sapling/Shrub – Woody plants less than 3 in. DBH
<u>9.</u> 10.		333	and greater than or equal to 3.28 ft (1 m) tall.
<u>10.</u> 11.			Herb – All herbaceous (non-woody) plants, regardless
			of size, and woody plants less than 3.28 ft tall.
<u>12.</u>	45	-Total Caruar	Woody vine – All woody vines greater than 3.28 ft in
	45	=Total Cover	height.
<u>Woody Vine Stratum:</u> (Plot size: <u>30</u>)			
1.			
2.	<u>.</u>	1 <u></u> 71	
3.	<u>.</u>	. <u> </u>	Hydrophytic
<u>4.</u>	4	· : :	Vegetation
<u>+.</u>	0	=Total Cover	Present? Yes X No
225 254 222 18 of 18 of 04 A A O			
Remarks: (Include photo numbers here or on a separate shee	et.)		

US Army Corps of Engineers

Northcentral and Northeast Region – Version 2.0

SOIL

Profile Desc	ription: (Describe to	the depth r	eeded to documen	t the indic	ator or co	onfirm the	e absence of in	dicators.)	
Depth Matrix Redox Features									
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture		Remarks
0-16	10YR 3/1	95	10YR 5/6	5	С	М	Silty Clay Loam	č	
				• 5					
 					·	<u> </u>		i.	2
		·		-	·			·	6
							· · · · · ·	ар. 16	
				100		,			
		· ·			·				
				-				ř.	
¹ Type: C=Co	ncentration, D=Deplet	ion, RM=Re	duced Matrix, MS=M	lasked Sa	nd Grains.	· <u> </u>	² Location: PL=	Pore Lining, M	=Matrix.
Hydric Soil I	ndicators:						Indicato	ors for Probler	natic Hydric Soils ³ :
Histosol	N 12		Polyvalue		rface (S8)	(LRR R,			(LRR K, L, MLRA 149B)
	bipedon (A2) stic (A3)		MLRA 14 Thin Dark		59) (I RR F	R MIRA 1			ox (A16) (LRR K, L, R) or Peat (S3) (LRR K, L, R)
Hydroge	en Sulfide (A4)		Loamy Mu	icky Miner	al (F1) (LR		Dar	k Surface (S7)	(LRR K, L)
Control Control Control March	l Layers (A5) l Below Dark Surface	(411)	Loamy Gle				100 Contraction (100 Contraction)		Surface (S8) (LRR K, L) (S9) (LRR K, L)
	ark Surface (A12)	(AII)	Depleted				100 million (1)		Aasses (F12) (LRR K, L, R)
Contraction of the second s	lucky Mineral (S1)		Depleted						ain Soils (F19) (MLRA 149B)
	Bleyed Matrix (S4) tedox (S5)		Redox De	pressions	(F8)			sic Spodic (TA6 I Parent Materi	δ) (MLRA 144A, 145, 149B) al (F21)
	Matrix (S6)								Surface (TF12)
Dark Su	rface (S7) (LRR R, ML	.RA 149B)					Oth	er (Explain in F	Remarks)
³ Indicators o	f hydrophytic vegetatio	n and wetla	nd hydrology must b	e present,	unless dis	turbed or	problematic.		
Restrictive L	ayer (if observed):								
Type: Depth (inch	os).						Hydric Soil	Present?	Yes <u>X</u> No
Remarks:	esj.								
Remarks.									

APPENDIX C

Floristic Quality Index

SITE: IL-20 Wetland WD001 M. O'Loughlin LOCALE: BY:

NOTES: CONSERVATISM-BASED METRICS

MEAN C (NATIVE SPECIES)	c).33	SPECIES RICHNESS (ALL)	4
MEAN C (ALL SPECIES) MEAN C	Ì	0.25	SPECIES RICHNESS (NATIVE)	3
(NATIVE TREES)	n/a		% NON-NATIVE	0.25
MEAN C (NATIVE SHRUBS) MEAN C	n/a		WET INDICATOR (ALL)	-0.75
(NATIVE			WET INDICATOR	
HERBACEOUS)	ļ	0.33	(NATIVE)	-1.33
FQAI (NATIVE SPECIES) FQAI	C).58	% HYDROPHYTE (MIDWEST) % NATIVE	0.75
(ALL SPECIES)		0.50	PERENNIAL	0.25
ADJUSTED FQAI		2.89	% NATIVE ANNUAL	0.50
% C VALUE 0		0.75	% ANNUAL	0.75
% C VALUE 1-3		0.25	% PERENNIAL	0.25
% C VALUE 4-6 % C VALUE 7-10		0.00		
-70 C VALUE 7-10		0.00		

	SPECIES NAME				MIDWEST		WET			
SPECIES	(NWPL/	SPECIES	COMMON		WET	NC-NE WET	INDICATOR			
ACRONYM	MOHLENBROCK)	(SYNONYM)	NAME	C VALUE	INDICATOR	INDICATOR	(NUMERIC)	HABIT	DURATION	NATIVITY
	Amaranthus	Acnida	Rough-Fruit							
amatub	tuberculatus	altissima	Amaranth		1 OBL	OBL	-	2 Forb	Annual	Native
		Cyperus								
cypesc	Cyperus esculentus	esculentus	Chufa		0 FACW	FACW	-	1 Sedge	Perennial	Native
		Panicum								
	Panicum	dichotomiflor								
pandic	dichotomiflorum	um	Fall Panic Grass		0 FACW	FACW	-	1 Grass	Annual	Native
		PORTULACA								
porole	Portulaca oleracea	OLERACEA	Little-Hogweed		0 FACU	FACU		1 Forb	Annual	Adventive

ADDITIONAL

METRICS

APPENDIX D

Photographs

Photograph 1. Wetland WD001 (PEM), facing north (8/31/2022 by M. O'Loughlin).

Photograph 2. Wetland WD002 (PEM), facing northeast (8/31/2022 by M. O'Loughlin).

Photograph 3. Agircultural upland (DPD002_UPL), facing north (8/31/2022 by M. O'Loughlin).

230 W. Monroe Street, Suite 1840 Chicago, IL 60606

Stormwater Report

Runoff and Peak Rate Analysis

RPIL Solar 5, LLC Storm Water

June 2023

Prepared For:

Renewable Properties, LLC 879 Sanchez Street San Francisco, CA 94114

Prepared By:

TRC 999 Fourier Dr., Suite 101 Madison, Wisconsin 53717

Anne Rowley, PE Project Manager

SHEET <u>1</u> OF <u>5</u>

999 Fourier Dr., Suite 101 (53717) Madison, WI 608.826.3600

PROJECT/PROPOSAL NAME	PREPARED		CHECKED		PROJECT/PROPOSAL NO.
	By:	Date:	By:	Date:	
RPIL Solar 5, LLC	C. Zumm	6/15/2023	A. Rowley	6/15/2023	500015.0000.0005

Purpose:

To estimate the change in storm water runoff volume and the peak discharge rate during the 2-year, 10-year, and 100-year, 24-hour storms resulting from a solar development located north of US Highway 20 in Rutland Township, Kane County, Illinois (the Site). This change in storm water runoff volume and the peak discharge rate will dictate which storm water controls, if any, will be required.

Methodologies:

- Analysis of storm water runoff for the post condition was completed using HydroCAD®, Version 10, storm water modeling software (HydroCAD). HydroCAD is largely based on the United States Department of Agriculture (USDA) Soil Conservation Service's (SCS), (also known as the Natural Resources Conservation Service [NRCS]) Technical Release 55 (TR-55) and TR-20 hydrology methods. HydroCAD also incorporates capabilities such as outlet hydraulics, exfiltration calculations, and a range of other features that are not applicable to the TR-55 and TR-20 methods. Additionally, it is able to do different distributions, such as the Huff distribution.
- Drainage areas (subcatchments) and time of concentration lines for both the pre- and postdevelopment conditions were delineated using Autodesk AutoCAD® Civil 3D design software (refer to Figures 1 and 2). These subcatchments and the corresponding time of concentration lines were then entered into HydroCAD. Surface runoff characteristics were determined based on the existing soils and topography at the Site, as well as planned final conditions. Rainfall quantities and storm distributions were determined based on the updated Bulletin 70 (see Attachment 1). HydroCAD was used to generate hydrographs from which the volume and peak discharge of storm water runoff were obtained.
- Both the pre- and post-development conditions were modeled based on topographic survey data performed by WT Group on March 22, 2023.

Assumptions:

- The following assumptions and input parameters were used when modeling the storm water runoff (refer to the attached HydroCAD outputs and references of this section):
 - It will not be necessary for the gravel access road for the Site to have graded storm water ditches to convey flow. Therefore, the flow of storm water will be dependent primarily on the existing topography.
 - Storm water runoff for the existing conditions is modeled as agricultural with overland flow.
 - Storm water runoff for the developed conditions is modeled as meadow with overland flow.
 - The length of sheet flow is 100 feet for each subcatchment.

COMPUTATION SHEET

SHEET <u>2</u> OF <u>5</u>

999 Fourier Dr., Suite 101 (53717) Madison, WI 608.826.3600

PROJECT/PROPOSAL NAME	PREPARED		CHECKED		PROJECT/PROPOSAL NO.
	By:	Date:	By:	Date:	
RPIL Solar 5, LLC	C. Zumm	6/15/2023	A. Rowley	6/15/2023	500015.0000.0005

- Calculations in this report are based on a 12-foot-wide gravel access road into the Site.
- Pilings for the solar panels were not accounted for, as the total area was insignificant (less than 30 SF) and impact to storm water is anticipated to be minimal.

Runoff and Routing Methods

- The Natural Resources Conservation Service (NRCS) Web Soil Survey (WSS) was utilized to determine existing soil groups on site. Group B, C, and D hydrologic soil groups (HSG) are present on site.
- Runoff curve numbers were assumed as described below using land type and hydrologic soil group:

Land Description	Area	Curve Number (HSG B)	Curve Number (HSG C)	Curve Number (HSG D)	Reference
Row crops, SR + CR, Good	1, 2, 3, 4, 5	75	82	85	TR-55
>75% Grass cover, Good	1, 2	61	NA	80	TR-55
Woods, Fair	5	NA	73	79	TR-55
Meadow, non-grazed	1, 2, 3, 4, 5	58	71	78	TR-55
Gravel roads	1, 2	85	NA	91	TR-55
Roofs	2	98	NA	NA	TR-55

Storm Events

- The values are based on Illinois State Water Survey (ISWS) Updated Bulletin 70 for standard precipitation estimates (see Attachment 1).
- A 4th Quartile Huff rainfall distribution was utilized when producing runoff hydrographs.
- A 2-year, 24-hour storm event in the vicinity of the Site produces 3.34 inches of rain.
- A 10-year, 24-hour storm event in the vicinity of the Site produces 5.15 inches of rain.
- A 100-year, 24-hour storm event in the vicinity of the Site produces 8.57 inches of rain.

Storm Water Runoff Results:

The results of the storm water runoff calculations are summarized in the tables below. The 2-year, 24-hour storm and 100-year, 24-hour storm have the peak runoff rate and total runoff volume summarized in Tables 1 and 2. Runoff rates for the 10-year, 24-hour storm are provided in Table 4 to compare the pre-development conditions and the post-development conditions. Refer to the attached HydroCAD outputs in Attachments 2 and 3 for more details.

SHEET <u>3</u> OF <u>5</u>

999 Fourier Dr., Suite 101 (53717) Madison, WI 608.826.3600

PROJECT/PROPOSAL NAME	PREPARED		CHECKED		PROJECT/PROPOSAL NO.
	By:	Date:	By:	Date:	
RPIL Solar 5, LLC	C. Zumm	6/15/2023	A. Rowley	6/15/2023	500015.0000.0005

Table 1: Pre-Development Storm Water Runoff Summary

			2-Year, 24-	2-Year, 24-Hour Storm		-Hour Storm
Watershed ID	Area (acres)	Time of Concentration (minutes)	Peak Runoff Rate (cfs)	Peak Runoff Volume (acre-ft)	Peak Runoff Rate (cfs)	Peak Runoff Volume (acre-ft)
S-1	10.9	29.9	3.02	1.25	10.49	5.16
S-2	13.7	16.3	3.39	1.30	12.94	6.03
S-3	15.4	25.0	4.28	1.76	14.88	7.25
S-4	3.6	29.3	0.99	0.41	3.44	1.69
S-5	65.1	56.8	18.31	8.18	61.07	31.98
Total Site	108.7	-	-	12.90	-	52.11

Table 2: Post-Development Storm Water Runoff Summary

			2-Year, 24-	Hour Storm	100-Year, 24	-Hour Storm
Watershed ID	Area (acres)	Time of Concentration (minutes)	Peak Runoff Rate (cfs)	Peak Runoff Volume (acre-ft)	Peak Runoff Rate (cfs)	Peak Runoff Volume (acre-ft)
S-1	10.9	30.9	3.01	1.25	10.47	5.16
S-2	13.7	16.2	3.39	1.30	12.94	6.03
S-3	15.4	77.7	2.83	1.10	12.29	6.12
S-4	3.6	36.8	0.61	0.21	2.92	1.32
S-5	65.1	65.7	16.99	7.47	59.14	31.00
Total Site	108.7	-	-	11.33	-	49.63

Table 3:	Difference	in Storm	Water	Runoff	Summary
----------	------------	----------	-------	--------	---------

	2-Year, 24-Hour Storm	100-Year, 24-Hour Storm
Watershed ID	Percent Volume Reduction (%)	Percent Volume Reduction (%)
S-1	0.00	0.00
S-2	0.00	0.00
S-3	37.50	15.59
S-4	48.78	21.89
S-5	8.68	3.06
Total Site	12.17	4.76

SHEET <u>4</u> OF <u>5</u>

999 Fourier Dr., Suite 101 (53717) Madison, WI 608.826.3600

PROJECT/PROPOSAL NAME	PREPARED		CHECKED		PROJECT/PROPOSAL NO.
	By:	Date:	By:	Date:	
RPIL Solar 5, LLC	C. Zumm	6/15/2023	A. Rowley	6/15/2023	500015.0000.0005

Table 4: 10-Year, 24-Hour Storm Runoff Rates

	10-Year, 24-Hour Storm						
Watershed ID	Pre-Development Peak Runoff Rate (cfs)	Post-Development Peak Runoff Rate (cfs)					
S-1	5.59	5.58					
S-2	6.63	6.63					
S-3	7.93	5.96					
S-4	1.83	1.36					
S-5	33.10	31.48					

The results indicate a decrease in storm water runoff from each subcatchment. With these results, it is anticipated that no detention storage or other storm water runoff controls will be required for the Site to maintain equal to or better than previous outflow.

Proposed Best Management Practices:

The proposed development adds approximately 21,812 square feet of impervious area to the site. In accordance with the Kane County Stormwater Management Ordinance, Category I Best Management Practices (BMPs) are required to be incorporated into the project. The proposed BMPs will provide runoff volume reduction and water quality treatment for one inch of rainfall over the added impervious area. The volume of water reduction and treatment required is approximately 1,818 cubic feet. Permanent Vegetation is proposed to meet the Category I BMP requirements. A native seeding mix that is suitable for site conditions will be selected in accordance with the Practice Standards of the Illinois Urban Manual. Permanent Vegetation (Code 880) will establish a permanent cover to stabilize soils and enhance permeability while reducing runoff and erosion. Permanent vegetation will be implemented within the fenced area, and in 10-foot-wide strips along portions of the access road within subcatchment S-1 as shown in Figure 2.

BMP Sizing

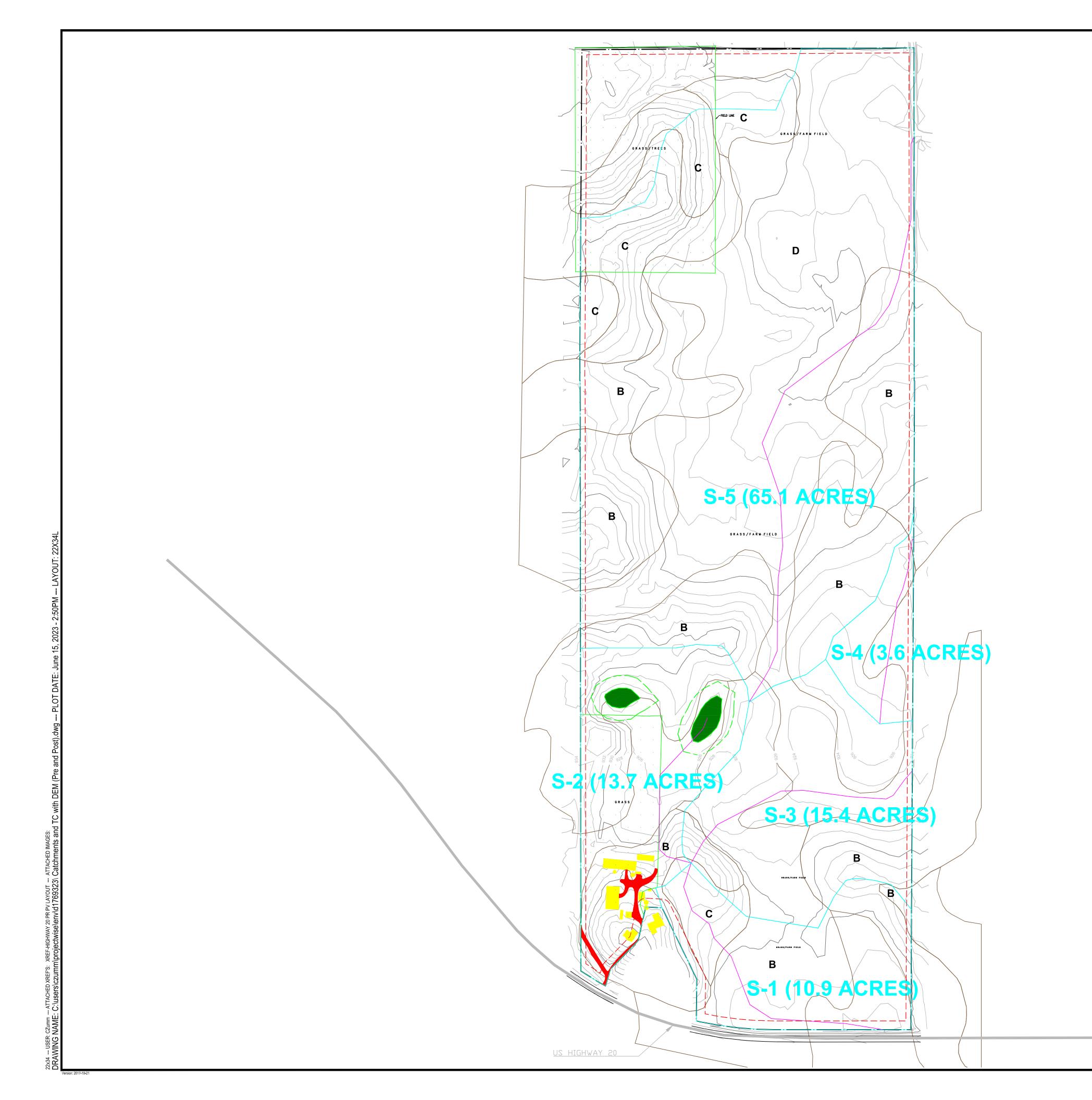
As discussed in earlier sections, ground cover improvements are proposed for the entire fenced area of the site, however, to be flexible with seeding options, the minimum area of permanent vegetation to meet the BMP requirements was calculated. Calculations in Attachment 4 show that 30,000 square feet, or approximately 0.7 acres, of permanent vegetation must be implemented to meet the BMP volume reduction requirements.

Implementation and Maintenance

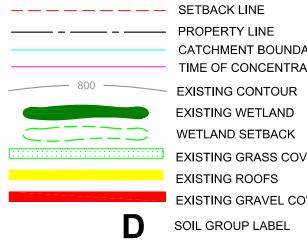
Permanent Vegetation will be implemented and maintained in accordance with Illinois Urban Manual practice standards. The landscaping details (Sheets L100 - L102) in the Civil Plan Set show proposed seed mixes, and planting locations. It is expected that this seed mix meets the

SHEET <u>5</u> OF <u>5</u>

999 Fourier Dr., Suite 101 (53717) Madison, WI 608.826.3600


PROJECT/PROPOSAL NAME	PREPARED		CHECKED		PROJECT/PROPOSAL NO.
	By:	Date:	By:	Date:	
RPIL Solar 5, LLC	C. Zumm	6/15/2023	A. Rowley	6/15/2023	500015.0000.0005

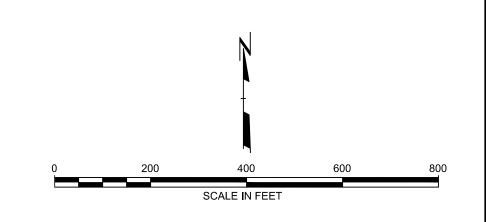
requirements of practice standard 808a which lists acceptable plant species. Low-maintenance plants are prioritized in the landscaping plan. Prescribed burns and frequent mowing will not be implemented. Native grasses, forbs, and legumes are proposed. Low areas of the site, which are prone to inundation, will be seeded with a separate seed mixture as described in the landscaping plan.


References:

- HydroCAD[®] Software Solutions LLC (HydroCAD). 2013. HydroCAD Storm Water Modeling System. Version 10.00.
- US Department of Agriculture, Soil Conservation Service (SCS). Urban Hydrology for Small Watersheds. Technical Release No. 55 (TR-55). 2nd Edition. June 1986.

Figures

LEGEND



CATCHMENT BOUNDARY TIME OF CONCENTRATION LINE EXISTING WETLAND WETLAND SETBACK EXISTING GRASS COVER EXISTING ROOFS EXISTING GRAVEL COVER SOIL GROUP LABEL - SOIL GROUP BOUNDARY

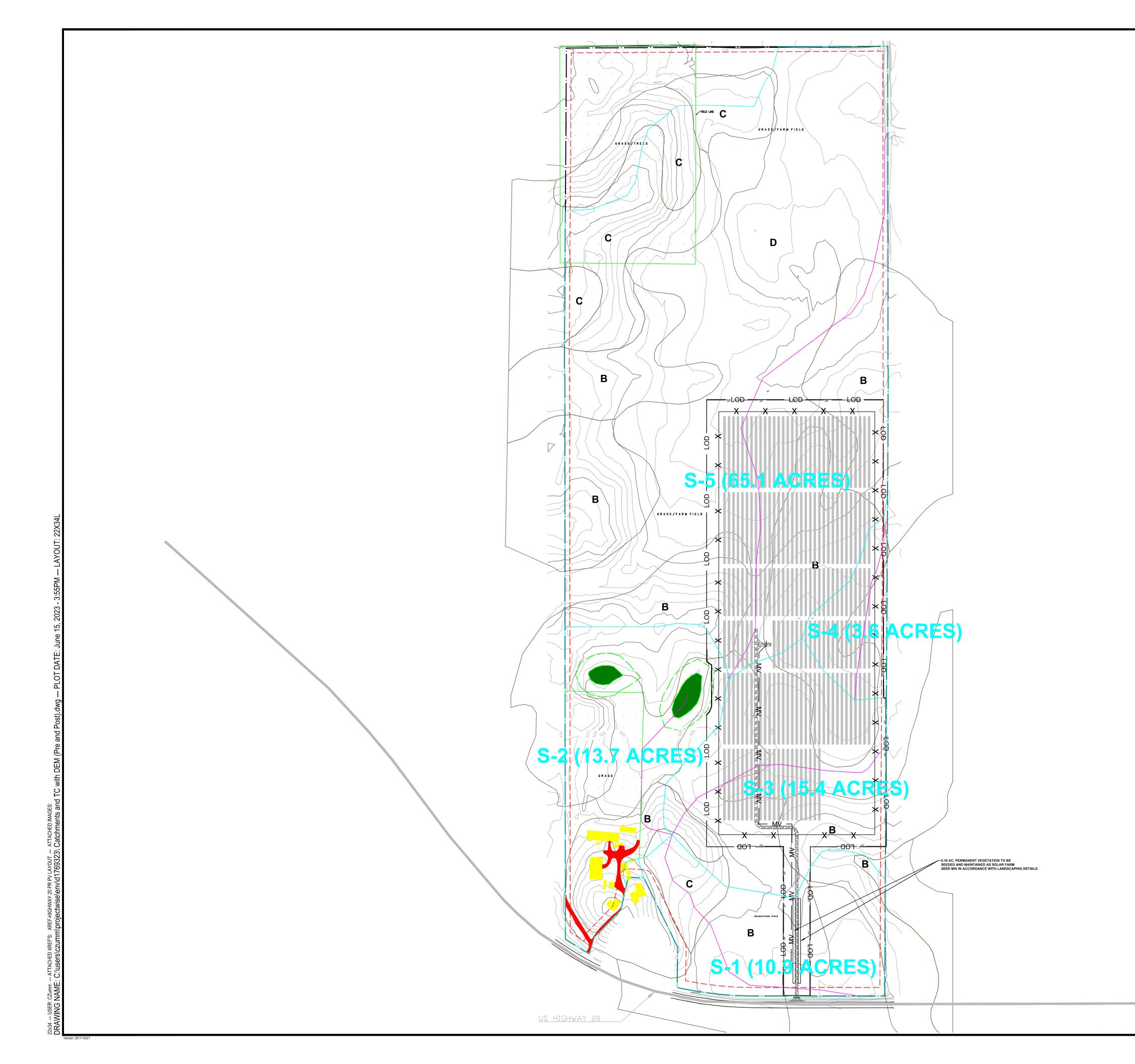
10-YEAR, 24-HOUR STORM PEAK RUNDFF RATES				
CATCHMENT	PRE-DEVELOPMENT POST-DEVELOPMEN (CFS) (CFS)			
S-1	5.59	5.58		
2-5	6.63	6.63		
2-3	7.93	5.96		
S-4	1.83	1.36		
S-5	33.10	31.48		

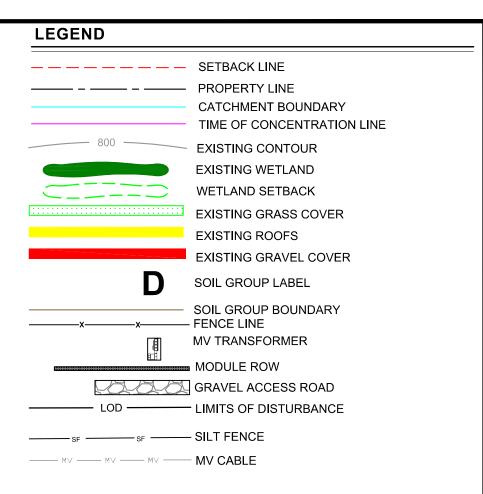
NOTES

- 1. GROUP A. SOILS HAVING A HIGH INFILTRATION RATE (LOW RUNOFF POTENTIAL) WHEN THOROUGHLY WET. THESE CONSIST MAINLY OF DEEP, WELL DRAINED TO EXCESSIVELY DRAINED SANDS OR GRAVELLY SANDS. THESE SOILS HAVE A HIGH RATE OF WATER TRANSMISSION.
- 2. GROUP B. SOILS HAVING A MODERATE INFILTRATION RATE WHEN THOROUGHLY WET. THESE CONSIST CHIEFLY OF MODERATELY DEEP OR DEEP, MODERATELY WELL DRAINED OR WELL DRAINED SOILS THAT HAVE MODERATELY FINE TEXTURE TO MODERATELY COARSE TEXTURE. THESE SOILS HAVE A MODERATE RATE OF WATER TRANSMISSION.
- 3. GROUP C. SOILS HAVING A SLOW INFILTRATION RATE WHEN THOROUGHLY WET. THESE CONSIST CHIEFLY OF SOILS HAVING A LAYER THAT IMPEDES THE DOWNWARD MOVEMENT OF WATER OR SOILS OF MODERATELY FINE TEXTURE OR FINE TEXTURE. THESE SOILS HAVE A SLOW RATE OF WATER TRANSMISSION.
- 4. GROUP D. SOILS HAVING A VERY SLOW INFILTRATION RATE (HIGH RUNOFF POTENTIAL) WHEN THOROUGHLY WET. THESE CONSIST CHIEFLY OF CLAYS THAT HAVE A HIGH SHRINK-SWELL POTENTIAL, SOILS THAT HAVE A HIGH WATER TABLE, SOILS THAT HAVE A CLAYPAN OR CLAY LAYER AT OR NEAR THE SURFACE, AND SOILS THAT ARE SHALLOW OVER NEARLY IMPERVIOUS MATERIAL. THESE SOILS HAVE A VERY SLOW RATE OF WATER TRANSMISSION.

RPIL SOLAR 5, LLC KANE COUNTY, IL 60140

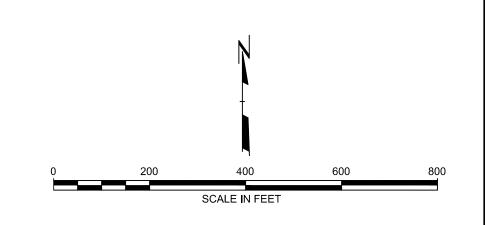
TITLE:


FILE NO.


PRE-DEVELOPMENT CATCHMENTS

DRAWN BY:	C. ZUMM	PROJ. NO.:	50015.0000.0005
CHECKED BY:	C. ZUMM		
APPROVED BY:	A. ROWLEY		FIGURE 1
DATE:	JUNE 2023		

Catchments and TC with DEM (Pre and Post).dwg



10-YEAR, 24-1	10-YEAR, 24-HOUR STORM PEAK RUNDFF RATES				
CATCHMENT	PRE-DEVELOPMENT POST-DEVELOPMEN (CFS) (CFS)				
S-1	5.59	5.58			
2–2	6.63	6.63			
2–3	7.93	5.96			
S-4	1.83	1.36			
S-5	33.10	31.48			

NOTES

- 1. GROUP A. SOILS HAVING A HIGH INFILTRATION RATE (LOW RUNOFF POTENTIAL) WHEN THOROUGHLY WET. THESE CONSIST MAINLY OF DEEP, WELL DRAINED TO EXCESSIVELY DRAINED SANDS OR GRAVELLY SANDS. THESE SOILS HAVE A HIGH RATE OF WATER TRANSMISSION.
- 2. GROUP B. SOILS HAVING A MODERATE INFILTRATION RATE WHEN THOROUGHLY WET. THESE CONSIST CHIEFLY OF MODERATELY DEEP OR DEEP, MODERATELY WELL DRAINED OR WELL DRAINED SOILS THAT HAVE MODERATELY FINE TEXTURE TO MODERATELY COARSE TEXTURE. THESE SOILS HAVE A MODERATE RATE OF WATER TRANSMISSION.
- 3. GROUP C. SOILS HAVING A SLOW INFILTRATION RATE WHEN THOROUGHLY WET. THESE CONSIST CHIEFLY OF SOILS HAVING A LAYER THAT IMPEDES THE DOWNWARD MOVEMENT OF WATER OR SOILS OF MODERATELY FINE TEXTURE OR FINE TEXTURE. THESE SOILS HAVE A SLOW RATE OF WATER TRANSMISSION.
- 4. GROUP D. SOILS HAVING A VERY SLOW INFILTRATION RATE (HIGH RUNOFF POTENTIAL) WHEN THOROUGHLY WET. THESE CONSIST CHIEFLY OF CLAYS THAT HAVE A HIGH SHRINK-SWELL POTENTIAL, SOILS THAT HAVE A HIGH WATER TABLE, SOILS THAT HAVE A CLAYPAN OR CLAY LAYER AT OR NEAR THE SURFACE, AND SOILS THAT ARE SHALLOW OVER NEARLY IMPERVIOUS MATERIAL. THESE SOILS HAVE A VERY SLOW RATE OF WATER TRANSMISSION.

RPIL SOLAR 5, LLC KANE COUNTY, IL 60140

POST-DEVELOPMENT CATCHMENTS

DRAWN BY:	C. ZUMM	PROJ. NO.:	50015.0000.0005
CHECKED BY:	C. ZUMM		
APPROVED BY:	A. ROWLEY		FIGURE 2
DATE:	JUNE 2023		

Catchments and TC with DEM (Pre and Post).dwg

Attachment 1 Bulletin 70 Precipitation Estimates

Results

Frequency Estimates

To determine the precipitation frequency, the previously described regional frequency analysis was applied to the AMS data. The results were then converted to the PDS domain based on the relationship defined in Eq. 1 and adjusted for the trend (Eq. 3). These results, however, still had occasional minor inconsistencies caused by several factors, such as variable data length for different durations, which resulted in irregular frequency curves. To produce the final curves, these irregularities had to be smoothed out, which was done based on the authors' professional judgment and knowledge of specific regions and gages.

The results for all sections are shown in the following tables. Table 4 displays the key for the codes used in Table 5 where the results are presented numerically. The results are shown graphically in Figures 8–12.

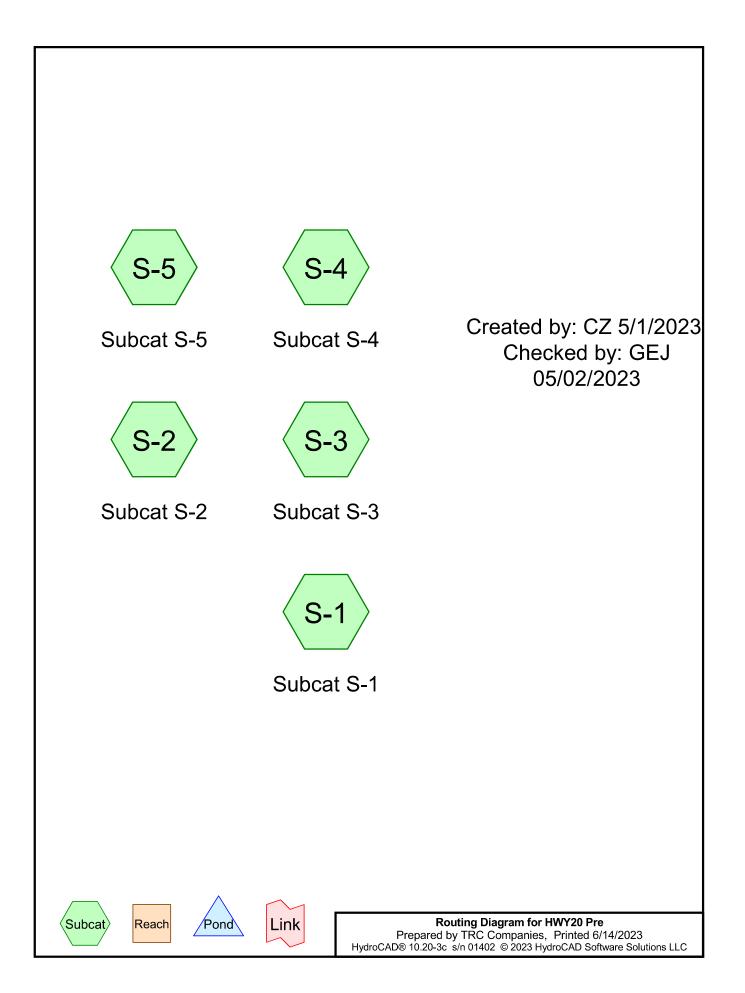
Table 4 Storm and Sectional Codes for Table 5

1 hour

11

Sto	orm Code	Se	ctional Code
1	240 hours	1	Northwest
2	120 hours	2	Northeast
3	72 hours	3	West
4	48 hours	4	Central
5	24 hours	5	East
6	18 hours	6	West Southwest
7	12 hours	7	Southeast
8	6 hours	8	Southwest
9	3 hours	9	Southeast
10	2 hours	10	South
	53		

Table 5 Rainfall Frequencies


		Rainfall (i	nches) f. r g	g ⁱ ven recuri	renze in erv	al		
Stor n	Section	2-yeur	5 year	15 year	25-year	5c-yeur	100-	500-
code	code			an search a short a sh	Harde Consored		year	yecr
1	1	5.48	6.86	7.98	9.55	10.84	12.14	15.65
1	2	5.60	7.09	8.25	9.90	11.26	12.65	16.00
1	3	5.62	7.00	8.10	9.60	10.65	11.64	13.99
1	4	5.46	6.87	8.04	9.53	10.55	11.50	13.65
1	5	5.50	6.84	7.90	9.35	10.45	11.55	13.96
1	6	6.00	7.38	8.47	9.95	10.99	11.95	14.08
1	7	6.57	7.86	8.90	10.20	11.20	12.06	13.95
1	8	6.75	8.18	9.30	10.80	11.95	13.10	15.95
1	9	7.06	8.30	9.22	10.37	11.21	11.96	13.75
1	10	6.36	7.65	8.76	10.40	11.66	12.96	16.20
2	1	4.35	5.51	6.46	7.88	8.96	10.20	13.33
2	2	4.42	5.63	6.68	8.16	9.39	10.66	13.81
2	3	4.51	5.66	6.62	7.94	8.93	9.83	11.99
2	4	4.27	5.42	6.42	7.75	8.72	9.60	11.54
2	5	4.34	5.43	6.41	7.73	8.79	9.80	11.93
2	6	4.49	5.60	6.49	7.77	8.69	9.57	11.53
2	7	5.00	6.11	7.01	8.23	9.11	9.95	11.71
2	8	5.31	6.51	7.47	8.79	9.81	10.84	13.45
2	9	5.73	6.78	7.60	8.64	9.47	10.20	11.97
2	10	5.18	6.30	7.29	8.69	9.78	10.91	13.84
3	1	3.90	4.95	5.87	7.21	8.30	9.45	12.30
3	2	3.97	5.08	6.05	7.49	8.64	9.85	12.81
3	3	4.11	5.18	6.08	7.34	8.31	9.18	11.27
3	4	3.88	4.96	5.90	7.17	8.09	8.98	10.81
3	5	3.88	4.90	5.78	7.04	8.01	8.93	11.00
3	6	4.00	5.00	5.83	7.01	7.91	8.73	10.61
3	7	4.35	5.37	6.19	7.34	8.19	8.97	10.57
3	8	4.74	5.82	6.71	7.96	8.89	9.86	12.32
3	9	5.13	6.09	6.86	7.87	8.63	9.34	10.93
3	10	4.54	5.61	6.50	7.78	8.79	9.86	12.55

18

		Rainfall (in	ches) for g	iven recurre	ence intervo	al		
Storm	Section	2-year	5-year	10 year	25-year	50 year	100-	500-
code	code						year	year
-	1	3.61	4.59	5.43	6.72	7.73	8.83	11.53
÷	2	3.66	4.71	5.62	6.99	8.13	9.28	12.10
÷	3	3.76	4.76	5.62	6.81	7.72	8.60	10.58
4	4	3.59	4.61	5.47	6.65	7.55	8.40	10.21
4	5	3.54	4.49	5.32	6.48	7.38	8.27	10.26
4	6	3.66	4.61	5.38	6.48	7.33	8.11	9.93
4	7	3.92	4.85	5.61	6.67	7.46	8.21	9.76
4	8	4.28	5.29	6.10	7.25	8.15	9.08	11.40
4	9	4.64	5.54	6.27	7.24	7.94	8.58	10.06
4	10	4.06	5.02	5.86	7.04	8.01	9.02	11.56
5	1	3.34	4.22	5.03	6.20	7.20	8.25	10.84
5	2	3.34	4.30	5.15	6.45	7.50	8.57	11.24
5	3	3.48	4.45	5.24	6.38	7.25	8.06	9.91
5	4	3.32	4.30	5.10	6.20	7.05	7.85	9.53
5	5	3.12	3.97	4.71	5.78	6.62	7.43	9.32
5	6	3.23	4.07	4.76	5.79	6.56	7.31	9.04
5	7	3.49	4.33	5.00	5.98	6.71	7.40	8.84
5	8	3.69	4.56	5.27	6.30	7.14	7.96	10.06
5	9	4.07	4.89	5.55	6.42	7.06	7.68	8.99
5	10	3.63	4.52	5.28	6.38	7.29	8.23	10.57
6	1	3.14	3.97	4.73	5.83	6.77	7.75	10.19
6	2	3.14	4.04	4.84	6.06	7.05	8.06	10.57
6	3	3.27	4.18	4.93	6.00	6.82	7.58	9.32
6	4	3.12	4.04	4.79	5.83	6.63	7.38	8.96
6	5	2.93	3.73	4.43	5.43	6.22	6.98	8.76
6	6	3.04	3.83	4.47	5.44	6.17	6.87	8.50
6	7	3.28	4.07	4.70	5.62	6.31	6.96	8.31
6	8	3.47	4.29	4.95	5.92	6.71	7.48	9.45
6	9	3.83	4.60	5.22	6.03	6.64	7.22	8.45
6	10	3.41	4.25	4.96	6.00	6.85	7.73	9.93

Rainfall (inches) for given recurrence interval

Attachment 2 Pre-Development HydroCAD Calculations

					-	•			
E	vent#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)	AMC
	1	2-Year	Huff B70 0-10sm	4Q	Scale	24.00	1	3.34	2
	2	10-Year	Huff B70 0-10sm	4Q	Scale	24.00	1	5.15	2
	3	100-Year	Huff B70 0-10sm	4Q	Scale	24.00	1	8.57	2

Rainfall Events Listing (selected events)

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
4.171	61	>75% Grass cover, Good, HSG B (S-1, S-2)
2.099	80	>75% Grass cover, Good, HSG D (S-2)
0.286	85	Gravel roads, HSG B (S-2)
0.007	91	Gravel roads, HSG D (S-2)
0.346	98	Roofs, HSG B (S-2)
47.594	75	Row crops, SR + CR, Good, HSG B (S-1, S-2, S-3, S-4, S-5)
6.435	82	Row crops, SR + CR, Good, HSG C (S-1, S-2, S-3, S-5)
42.749	85	Row crops, SR + CR, Good, HSG D (S-1, S-2, S-3, S-4, S-5)
4.661	73	Woods, Fair, HSG C (S-5)
0.347	79	Woods, Fair, HSG D (S-5)
108.695	79	TOTAL AREA

Soil Listing (all nodes)

Soil	Subcatchment
Group	Numbers
HSG A	
HSG B	S-1, S-2, S-3, S-4, S-5
HSG C	S-1, S-2, S-3, S-5
HSG D	S-1, S-2, S-3, S-4, S-5
Other	
	TOTAL AREA
	Group HSG A HSG B HSG C HSG D

HWY20 Pre

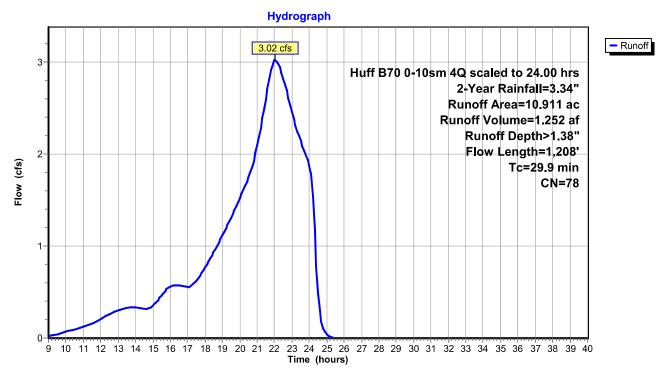
Prepared by TRC Companies	S
HydroCAD® 10.20-3c s/n 01402	© 2023 HydroCAD Software Solutions LLC

					•	,		
	HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatchment
_	(acres)	(acres)	(acres)	(acres)	(acres)	(acres)	Cover	Numbers
	0.000	4.171	0.000	2.099	0.000	6.270	>75% Grass cover, Good	S-1,
								S-2
	0.000	0.286	0.000	0.007	0.000	0.293	Gravel roads	S-2
	0.000	0.346	0.000	0.000	0.000	0.346	Roofs	S-2
	0.000	47.594	6.435	42.749	0.000	96.778	Row crops, SR + CR, Good	S-1,
								S-2,
								S-3,
								S-4,
								S-5
	0.000	0.000	4.661	0.347	0.000	5.008	Woods, Fair	S-5
	0.000	52.397	11.095	45.203	0.000	108.695	TOTAL AREA	

Ground Covers (all nodes)

Time span=9.00-40.00 hrs, dt=0.10 hrs, 311 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment S-1: Subcat S-1	Runoff Area=10.911 ac 0.00% Impervious Runoff Depth>1.38" Flow Length=1,208' Tc=29.9 min CN=78 Runoff=3.02 cfs 1.252 af
Subcatchment S-2: Subcat S-2	Runoff Area=13.741 ac 2.52% Impervious Runoff Depth=1.13" Flow Length=740' Tc=16.3 min CN=74 Runoff=3.39 cfs 1.295 af
Subcatchment S-3: Subcat S-3	Runoff Area=15.357 ac 0.00% Impervious Runoff Depth>1.38" Flow Length=1,053' Tc=25.0 min CN=78 Runoff=4.28 cfs 1.761 af
Subcatchment S-4: Subcat S-4	Runoff Area=3.571 ac 0.00% Impervious Runoff Depth>1.38" Flow Length=759' Tc=29.3 min CN=78 Runoff=0.99 cfs 0.410 af
Subcatchment S-5: Subcat S-5	Runoff Area=65.115 ac 0.00% Impervious Runoff Depth>1.51" Flow Length=2,541' Tc=56.8 min CN=80 Runoff=18.31 cfs 8.184 af
Total Runoff Area = 108.6	95 ac Runoff Volume = 12.901 af Average Runoff Depth = 1.42" 99.68% Pervious = 108.349 ac 0.32% Impervious = 0.346 ac


Summary for Subcatchment S-1: Subcat S-1

Runoff = 3.02 cfs @ 22.04 hrs, Volume= 1.252 af, Depth> 1.38" Routed to nonexistent node 2L

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 9.00-40.00 hrs, dt= 0.10 hrs Huff B70 0-10sm 4Q scaled to 24.00 hrs 2-Year Rainfall=3.34"

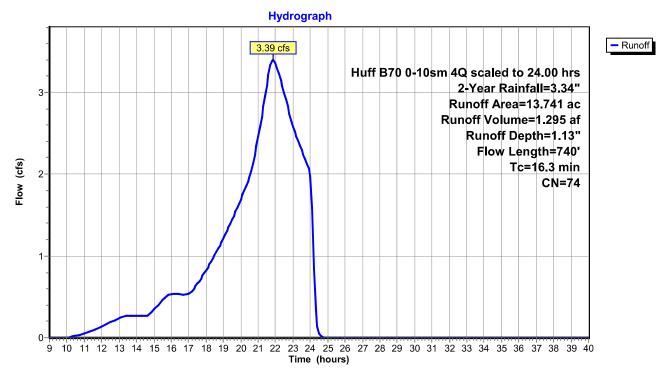
Area ((ac) C	N Des	cription					
0.0	0.026 61 >75% Grass cover, Good, HSG B							
6.	549 7	75 Row	crops, SF	+ CR, Goo	od, HSG B			
1.	730 8	32 Row	crops, SF	+ CR, Goo	od, HSG C			
2.0	606 8	35 Row	crops, SF	t + CR, Goo	od, HSG D			
10.9	911 7	78 Weig	ghted Aver	age				
10.9	911	100.	00% Pervi	ous Area				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
10.3	100	0.0217	0.16		Sheet Flow,			
19.6	1,108	0.0110	0.94		Cultivated: Residue>20% n= 0.170 P2= 3.34" Shallow Concentrated Flow, Cultivated Straight Rows Kv= 9.0 fps			
29.9	1,208	Total						

Subcatchment S-1: Subcat S-1

Prepared by TRC Companies HydroCAD® 10.20-3c s/n 01402 © 2023 HydroCAD Software Solutions LLC

Hydrograph for Subcatchment S-1: Subcat S-1

	. .	_	D	I .	Б.,	-	D <i>C</i>
Time	Precip.	Excess	Runoff	Time	Precip.	Excess	Runoff
(hours)	(inches)	(inches)	(cfs)	(hours)	(inches) 3.34	(inches)	(cfs)
9.00 9.50	0.63 0.67	0.00 0.00	0.02 0.04	35.00 35.50	3.34 3.34	1.38 1.38	0.00 0.00
10.00	0.07	0.00	0.04	36.00	3.34	1.38	0.00
10.50	0.75	0.01	0.10	36.50	3.34	1.38	0.00
11.00	0.80	0.02	0.12	37.00	3.34	1.38	0.00
11.50	0.85	0.03	0.16	37.50	3.34	1.38	0.00
12.00	0.90	0.04	0.21	38.00	3.34	1.38	0.00
12.50	0.96	0.05	0.26	38.50	3.34	1.38	0.00
13.00	1.02	0.06	0.30	39.00	3.34	1.38	0.00
13.50	1.07	0.08	0.33	39.50	3.34	1.38	0.00
14.00	1.12	0.09	0.33	40.00	3.34	1.38	0.00
14.50 15.00	1.17 1.22	0.11 0.12	0.32 0.35				
15.00	1.22	0.12	0.35				
16.00	1.35	0.17	0.56				
16.50	1.42	0.20	0.57				
17.00	1.48	0.22	0.55				
17.50	1.55	0.25	0.62				
18.00	1.63	0.29	0.77				
18.50	1.72	0.34	0.93				
19.00	1.82	0.39	1.11				
19.50 20.00	1.94 2.07	0.45 0.52	1.31 1.52				
20.00	2.07	0.52	1.52				
21.00	2.38	0.71	2.09				
21.50	2.57	0.83	2.59				
22.00	2.78	0.97	3.01				
22.50	2.95	1.10	2.82				
23.00	3.10	1.20	2.45				
23.50	3.23	1.30	2.14				
24.00	3.34	1.38	1.88				
24.50 25.00	3.34 3.34	1.38 1.38	0.48 0.04				
25.50	3.34	1.38	0.04				
26.00	3.34	1.38	0.00				
26.50	3.34	1.38	0.00				
27.00	3.34	1.38	0.00				
27.50	3.34	1.38	0.00				
28.00	3.34	1.38	0.00				
28.50	3.34	1.38	0.00				
29.00 29.50	3.34 3.34	1.38 1.38	0.00 0.00				
30.00	3.34	1.38	0.00				
30.50	3.34	1.38	0.00				
31.00	3.34	1.38	0.00				
31.50	3.34	1.38	0.00				
32.00	3.34	1.38	0.00				
32.50	3.34	1.38	0.00				
33.00 33.50	3.34 3.34	1.38 1.38	0.00 0.00				
33.50	3.34	1.38	0.00				
34.50	3.34	1.38	0.00				
0 1.00	0.01		0.00				
				•			


Summary for Subcatchment S-2: Subcat S-2

Runoff = 3.39 cfs @ 21.84 hrs, Volume= 1.295 af, Depth= 1.13" Routed to nonexistent node 2L

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 9.00-40.00 hrs, dt= 0.10 hrs Huff B70 0-10sm 4Q scaled to 24.00 hrs 2-Year Rainfall=3.34"

Area	(ac)	CN	l Desc	cription							
4	.145	61	>75%	5% Grass cover, Good, HSG B							
2	.099	80) >75%	% Grass co	over, Good	, HSG D					
0	.286	85	5 Grav	vel roads, ł	HSG B						
	.007	91		el roads, ł	HSG D						
0	.346	98		s, HSG B							
4	.704	75			t + CR, Goo						
0	.124	82			t + CR, Goo						
2	.030	85	5 Row	crops, SR	t + CR, Goo	od, HSG D					
13	.741	74	- Weig	ghted Aver	age						
13	.395		97.48	8% Pervio	us Area						
0	.346		2.52	% Impervi	ous Area						
			_								
Тс	Leng		Slope	Velocity	Capacity	Description					
(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)						
7.7	10	00	0.0446	0.22		Sheet Flow,					
						Cultivated: Residue>20%					
8.6	64	0	0.0188	1.23		Shallow Concentrated Flow,					
						Cultivated Straight Rows Kv= 9.0 fps					
16.3	74	0	Total								

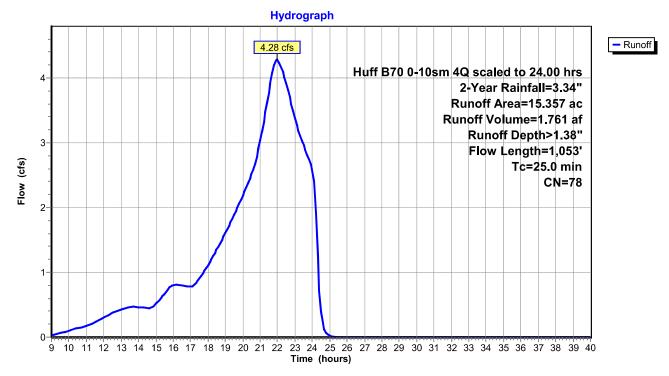
Prepared by TRC Companies

Subcatchment S-2: Subcat S-2

Prepared by TRC Companies HydroCAD® 10.20-3c s/n 01402 © 2023 HydroCAD Software Solutions LLC

Hydrograph for Subcatchment S-2: Subcat S-2

Time	Precip.	Excess	Runoff	Time	Precip.	Excess	Runoff
(hours)	(inches)	(inches)	(cfs)	(hours)	(inches)	(inches)	(cfs)
9.00	0.63	0.00	0.00	35.00	3.34	1.13	0.00
9.50	0.67	0.00	0.00	35.50	3.34	1.13	0.00
10.00	0.71	0.00	0.00	36.00	3.34	1.13	0.00
10.50	0.75	0.00	0.02	36.50	3.34	1.13	0.00
11.00	0.80	0.00	0.05	37.00	3.34	1.13	0.00
11.50	0.85	0.01	0.09 0.14	37.50 38.00	3.34 3.34	1.13	0.00 0.00
12.00 12.50	0.90 0.96	0.01 0.02	0.14	38.50	3.34	1.13 1.13	0.00
13.00	1.02	0.02	0.13	39.00	3.34	1.13	0.00
13.50	1.07	0.04	0.27	39.50	3.34	1.13	0.00
14.00	1.12	0.04	0.27	40.00	3.34	1.13	0.00
14.50	1.17	0.05	0.26				
15.00	1.22	0.07	0.34				
15.50	1.28	0.08	0.46				
16.00	1.35	0.10	0.54				
16.50 17.00	1.42 1.48	0.12 0.14	0.53 0.53				
17.50	1.55	0.14	0.66				
18.00	1.63	0.19	0.82				
18.50	1.72	0.23	1.01				
19.00	1.82	0.27	1.21				
19.50	1.94	0.32	1.44				
20.00	2.07	0.38	1.69				
20.50 21.00	2.21 2.38	0.45 0.54	1.96 2.46				
21.00	2.56	0.54	2.40 3.08				
22.00	2.78	0.77	3.34				
22.50	2.95	0.88	2.99				
23.00	3.10	0.97	2.58				
23.50	3.23	1.06	2.29				
24.00	3.34	1.13	1.98				
24.50	3.34	1.13	0.06				
25.00 25.50	3.34 3.34	1.13 1.13	0.00 0.00				
26.00	3.34	1.13	0.00				
26.50	3.34	1.13	0.00				
27.00	3.34	1.13	0.00				
27.50	3.34	1.13	0.00				
28.00	3.34	1.13	0.00				
28.50	3.34	1.13	0.00				
29.00 29.50	3.34 3.34	1.13 1.13	0.00 0.00				
30.00	3.34	1.13	0.00				
30.50	3.34	1.13	0.00				
31.00	3.34	1.13	0.00				
31.50	3.34	1.13	0.00				
32.00	3.34	1.13	0.00				
32.50	3.34	1.13	0.00				
33.00 33.50	3.34 3.34	1.13 1.13	0.00 0.00				
33.50	3.34	1.13	0.00				
34.50	3.34	1.13	0.00				


Summary for Subcatchment S-3: Subcat S-3

Runoff = 4.28 cfs @ 21.97 hrs, Volume= 1.761 af, Depth> 1.38" Routed to nonexistent node 2L

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 9.00-40.00 hrs, dt= 0.10 hrs Huff B70 0-10sm 4Q scaled to 24.00 hrs 2-Year Rainfall=3.34"

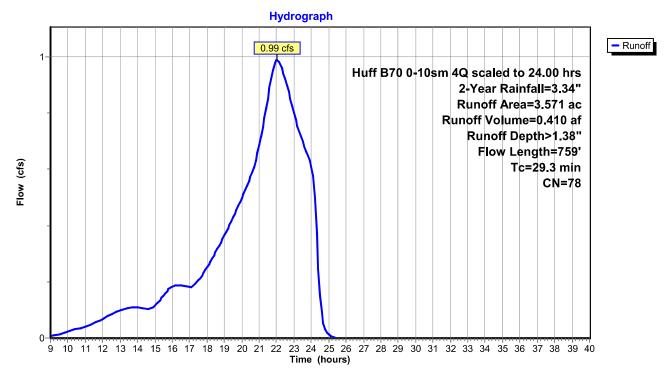
_	Area	(ac)	CN	Desc	cription			
	10.896 75 Row crops, SR + CR, Good, HSG B							
	0.	245	82	Row	crops, SR	+ CR, Goo	od, HSG C	
	4.	215	85	Row	crops, SR	+ CR, Goo	od, HSG D	
	15.	357	78	Weig	ghted Aver	age		
	15.	357		100.	00% Pervi	ous Area		
	Тс	Length	n S	lope	Velocity	Capacity	Description	
_	(min)	(feet)) ([ft/ft]	(ft/sec)	(cfs)		
	6.3	100	0.0)723	0.26		Sheet Flow,	
							Cultivated: Residue>20%	
	18.7	953	B 0.C	089	0.85		Shallow Concentrated Flow,	
							Cultivated Straight Rows Kv= 9.0 fps	
_	25.0	1,053	B To	tal				

Subcatchment S-3: Subcat S-3

Prepared by TRC Companies HydroCAD® 10.20-3c s/n 01402 © 2023 HydroCAD Software Solutions LLC

Hydrograph for Subcatchment S-3: Subcat S-3

Time	Dracin	Evenes	Duraff	Time c	Dracin	Evenes	Duroff
Time (hours)	Precip. (inches)	Excess (inches)	Runoff (cfs)	Time (hours)	Precip. (inches)	Excess (inches)	Runoff (cfs)
9.00	0.63	0.00	0.03	35.00	3.34	1.38	0.00
9.50	0.67	0.00	0.06	35.50	3.34	1.38	0.00
10.00	0.71	0.01	0.10	36.00	3.34	1.38	0.00
10.50	0.75	0.01	0.14	36.50	3.34	1.38	0.00
11.00	0.80	0.02	0.17	37.00	3.34	1.38	0.00
11.50	0.85	0.03	0.23	37.50	3.34	1.38	0.00
12.00 12.50	0.90 0.96	0.04 0.05	0.30 0.37	38.00 38.50	3.34 3.34	1.38 1.38	0.00 0.00
12.50	1.02	0.05	0.37	39.00	3.34	1.38	0.00
13.50	1.07	0.08	0.47	39.50	3.34	1.38	0.00
14.00	1.12	0.09	0.47	40.00	3.34	1.38	0.00
14.50	1.17	0.11	0.44				
15.00	1.22	0.12	0.51				
15.50	1.28	0.15	0.67				
16.00	1.35	0.17	0.81				
16.50 17.00	1.42 1.48	0.20 0.22	0.80 0.77				
17.50	1.40	0.22	0.90				
18.00	1.63	0.29	1.11				
18.50	1.72	0.34	1.35				
19.00	1.82	0.39	1.60				
19.50	1.94	0.45	1.88				
20.00	2.07	0.52	2.18				
20.50	2.21 2.38	0.61 0.71	2.51 3.04				
21.00 21.50	2.30	0.71	3.04 3.76				
22.00	2.78	0.97	4.28				
22.50	2.95	1.10	3.91				
23.00	3.10	1.20	3.37				
23.50	3.23	1.30	2.96				
24.00	3.34	1.38	2.58				
24.50	3.34	1.38	0.39				
25.00 25.50	3.34 3.34	1.38 1.38	0.02 0.00				
26.00	3.34	1.38	0.00				
26.50	3.34	1.38	0.00				
27.00	3.34	1.38	0.00				
27.50	3.34	1.38	0.00				
28.00	3.34	1.38	0.00				
28.50	3.34	1.38	0.00				
29.00 29.50	3.34 3.34	1.38 1.38	0.00 0.00				
30.00	3.34	1.38	0.00				
30.50	3.34	1.38	0.00				
31.00	3.34	1.38	0.00				
31.50	3.34	1.38	0.00				
32.00	3.34	1.38	0.00				
32.50 33.00	3.34 3.34	1.38 1.38	0.00 0.00				
33.00	3.34	1.38	0.00				
34.00	3.34	1.38	0.00				
34.50	3.34	1.38	0.00				


Summary for Subcatchment S-4: Subcat S-4

Runoff = 0.99 cfs @ 22.04 hrs, Volume= 0.410 af, Depth> 1.38" Routed to nonexistent node 2L

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 9.00-40.00 hrs, dt= 0.10 hrs Huff B70 0-10sm 4Q scaled to 24.00 hrs 2-Year Rainfall=3.34"

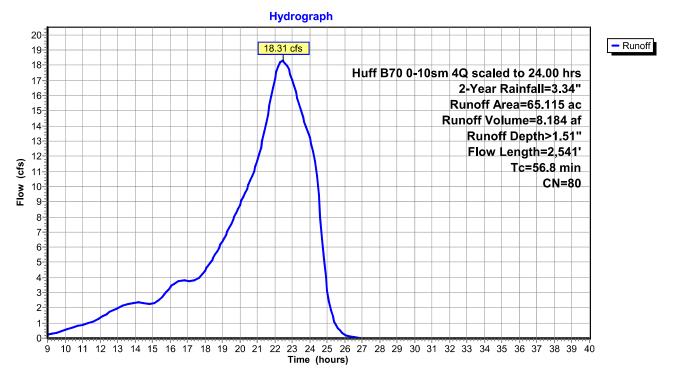
Area	(ac) C	N Dese	cription				
2	2.499 75 Row crops, SR + CR, Good, HSG B						
1.	073 8	5 Row	crops, SR	+ CR, God	od, HSG D		
3.	571 7	'8 Weig	ghted Aver	age			
3.	571	100.	00% Pervi	ous Area			
Тс	Length	Slope	Velocity	Capacity	Description		
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)			
13.6	100	0.0107	0.12		Sheet Flow,		
					Cultivated: Residue>20%		
11.6	447	0.0051	0.64		Shallow Concentrated Flow,		
					Cultivated Straight Rows Kv= 9.0 fps		
4.1	212	0.0092	0.86		Shallow Concentrated Flow,		
					Cultivated Straight Rows Kv= 9.0 fps		
29.3	759	Total					

Subcatchment S-4: Subcat S-4

Prepared by TRC Companies HydroCAD® 10.20-3c s/n 01402 © 2023 HydroCAD Software Solutions LLC

Hydrograph for Subcatchment S-4: Subcat S-4

				_			
Time	Precip.	Excess	Runoff	Time	Precip.	Excess	Runoff
(hours)	(inches)	(inches)	(cfs)	(hours)	(inches)	(inches)	(cfs)
9.00	0.63	0.00	0.01	35.00	3.34	1.38	0.00
9.50	0.67	0.00	0.01	35.50	3.34	1.38	0.00
10.00	0.71	0.01	0.02	36.00	3.34	1.38	0.00
10.50	0.75	0.01	0.03	36.50	3.34	1.38	0.00
11.00	0.80	0.02	0.04	37.00	3.34	1.38	0.00
11.50	0.85	0.03	0.05	37.50	3.34	1.38	0.00
12.00	0.90	0.04	0.07	38.00	3.34	1.38	0.00
12.50	0.96	0.05	0.09	38.50	3.34	1.38	0.00
13.00	1.02	0.06	0.10	39.00	3.34	1.38	0.00
13.50	1.07	0.08	0.11	39.50	3.34	1.38	0.00
14.00	1.12	0.09	0.11	40.00	3.34	1.38	0.00
14.50	1.17	0.11	0.10				
15.00	1.22	0.12	0.12				
15.50	1.28	0.15	0.15				
16.00	1.35	0.17	0.18				
16.50	1.42	0.20	0.19				
17.00	1.48	0.22	0.18				
17.50	1.55	0.25	0.20				
18.00	1.63	0.29	0.25				
18.50	1.72	0.34	0.31				
19.00 19.50	1.82 1.94	0.39 0.45	0.36 0.43				
20.00	2.07	0.43	0.43				
20.00	2.07	0.52	0.50				
20.50	2.21	0.01	0.69				
21.00	2.50	0.83	0.85				
22.00	2.78	0.83	0.83				
22.50	2.95	1.10	0.92				
23.00	3.10	1.20	0.80				
23.50	3.23	1.30	0.70				
24.00	3.34	1.38	0.61				
24.50	3.34	1.38	0.15				
25.00	3.34	1.38	0.01				
25.50	3.34	1.38	0.00				
26.00	3.34	1.38	0.00				
26.50	3.34	1.38	0.00				
27.00	3.34	1.38	0.00				
27.50	3.34	1.38	0.00				
28.00	3.34	1.38	0.00				
28.50	3.34	1.38	0.00				
29.00	3.34	1.38	0.00				
29.50	3.34	1.38	0.00				
30.00	3.34	1.38	0.00				
30.50	3.34	1.38	0.00				
31.00	3.34	1.38	0.00				
31.50	3.34	1.38	0.00				
32.00	3.34	1.38	0.00				
32.50	3.34	1.38	0.00				
33.00	3.34	1.38	0.00				
33.50	3.34	1.38	0.00				
34.00	3.34	1.38	0.00				
34.50	3.34	1.38	0.00				
				l			


Summary for Subcatchment S-5: Subcat S-5

Runoff = 18.31 cfs @ 22.45 hrs, Volume= 8.184 af, Depth> 1.51" Routed to nonexistent node 2L

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 9.00-40.00 hrs, dt= 0.10 hrs Huff B70 0-10sm 4Q scaled to 24.00 hrs 2-Year Rainfall=3.34"

Area	(ac) (CN Des	cription						
22.	.946	75 Row	/ crops, SF	R + CR, Goo	od, HSG B				
4.	.335		ow crops, SR + CR, Good, HSG C						
32.	.826	85 Row	/ crops, SF	R + CR, Goo	od, HSG D				
•			ods, Fair, F						
0	.347	79 Woo	ods, Fair, ⊦	ISG D					
65.	115	80 Wei	ghted Ave	rage					
65.	.115	100	.00% Pervi	ous Area					
_				_					
Tc	Length	•	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
9.9	100	0.0238	0.17		Sheet Flow,				
					Cultivated: Residue>20%				
5.5	380	0.0165	1.16		Shallow Concentrated Flow,				
					Cultivated Straight Rows Kv= 9.0 fps				
41.4	2,061	0.0085	0.83		Shallow Concentrated Flow,				
					Cultivated Straight Rows Kv= 9.0 fps				
56.8	2,541	Total							

Subcatchment S-5: Subcat S-5

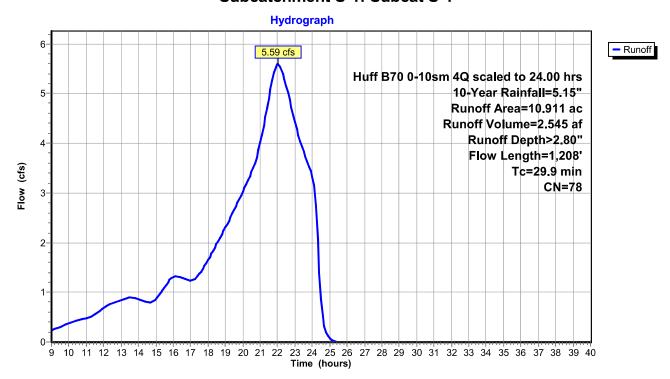
Prepared by TRC Companies HydroCAD® 10.20-3c s/n 01402 © 2023 HydroCAD Software Solutions LLC

Hydrograph for Subcatchment S-5: Subcat S-5

Time	Precip.	Excess	Runoff	Time	Precip.	Excess	Runoff
<u>(hours)</u>	(inches)	(inches)	(cfs)	(hours)	(inches)	(inches)	(cfs)
9.00	0.63	0.01	0.23	35.00	3.34	1.51	0.00
9.50	0.67	0.01	0.36	35.50	3.34	1.51	0.00
10.00	0.71	0.02	0.54	36.00	3.34	1.51	0.00
10.50	0.75	0.02	0.73	36.50	3.34	1.51	0.00
11.00	0.80	0.03	0.89	37.00	3.34	1.51	0.00
11.50	0.85	0.04	1.07	37.50	3.34	1.51	0.00
12.00	0.90	0.06	1.35	38.00	3.34	1.51	0.00
12.50	0.96	0.07	1.69	38.50	3.34	1.51	0.00
13.00	1.02	0.09	1.99	39.00	3.34	1.51	0.00
13.50	1.07	0.11	2.22	39.50	3.34	1.51	0.00
14.00	1.12	0.12	2.35	40.00	3.34	1.51	0.00
14.50	1.17	0.14	2.32				
15.00 15.50	1.22 1.28	0.16 0.19	2.29 2.66				
16.00	1.20	0.19	3.32				
16.50	1.42	0.22	3.76				
17.00	1.48	0.23	3.79				
17.50	1.55	0.31	3.85				
18.00	1.63	0.35	4.43				
18.50	1.72	0.40	5.33				
19.00	1.82	0.46	6.38				
19.50	1.94	0.53	7.53				
20.00	2.07	0.60	8.78				
20.50	2.21	0.69	10.11				
21.00	2.38	0.80	11.70				
21.50	2.57	0.94	14.14				
22.00	2.78	1.09	17.09				
22.50	2.95	1.22	18.30				
23.00	3.10	1.33	17.06				
23.50	3.23	1.43	15.03				
24.00	3.34	1.51	13.21				
24.50	3.34 3.34	1.51 1.51	9.40 3.11				
25.00 25.50	3.34	1.51	0.84				
26.00	3.34	1.51	0.84				
26.50	3.34	1.51	0.05				
27.00	3.34	1.51	0.00				
27.50	3.34	1.51	0.00				
28.00	3.34	1.51	0.00				
28.50	3.34	1.51	0.00				
29.00	3.34	1.51	0.00				
29.50	3.34	1.51	0.00				
30.00	3.34	1.51	0.00				
30.50	3.34	1.51	0.00				
31.00	3.34	1.51	0.00				
31.50	3.34	1.51	0.00				
32.00	3.34	1.51	0.00				
32.50	3.34 3.34	1.51 1.51	0.00 0.00				
33.00 33.50	3.34	1.51	0.00				
33.50	3.34	1.51	0.00				
34.00	3.34	1.51	0.00				
04.00	0.04	1.01	0.00				
				I			

Time span=9.00-40.00 hrs, dt=0.10 hrs, 311 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment S-1: Subcat S-1	Runoff Area=10.911 ac 0.00% Impervious Runoff Depth>2.80" Flow Length=1,208' Tc=29.9 min CN=78 Runoff=5.59 cfs 2.545 af					
Subcatchment S-2: Subcat S-2	Runoff Area=13.741 ac 2.52% Impervious Runoff Depth>2.47" Flow Length=740' Tc=16.3 min CN=74 Runoff=6.63 cfs 2.828 af					
Subcatchment S-3: Subcat S-3	Runoff Area=15.357 ac 0.00% Impervious Runoff Depth>2.80" Flow Length=1,053' Tc=25.0 min CN=78 Runoff=7.93 cfs 3.581 af					
Subcatchment S-4: Subcat S-4	Runoff Area=3.571 ac 0.00% Impervious Runoff Depth>2.80" Flow Length=759' Tc=29.3 min CN=78 Runoff=1.83 cfs 0.833 af					
Subcatchment S-5: Subcat S-5	Runoff Area=65.115 ac 0.00% Impervious Runoff Depth>2.97" Flow Length=2,541' Tc=56.8 min CN=80 Runoff=33.10 cfs 16.137 af					
Total Runoff Area = 108.695 ac Runoff Volume = 25.923 af Average Runoff Depth = 2.86" 99.68% Pervious = 108.349 ac 0.32% Impervious = 0.346 ac						


Summary for Subcatchment S-1: Subcat S-1

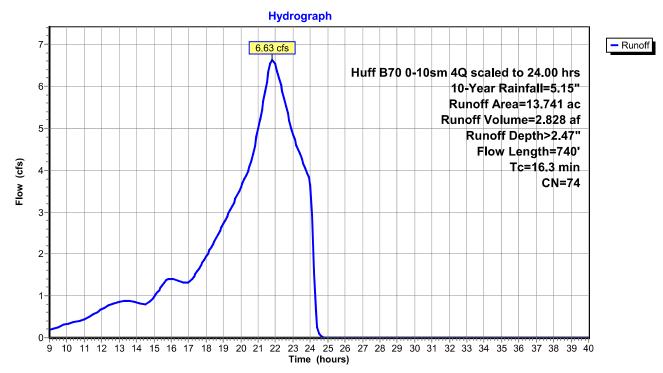
Runoff = 5.59 cfs @ 22.02 hrs, Volume= 2.545 af, Depth> 2.80" Routed to nonexistent node 2L

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 9.00-40.00 hrs, dt= 0.10 hrs Huff B70 0-10sm 4Q scaled to 24.00 hrs 10-Year Rainfall=5.15"

Area (ac) C	N Desc	cription							
0.0	0.026 61 >75% Grass cover, Good, HSG B									
6.5	549 7	5 Row	crops, SR	+ CR, Goo	od, HSG B					
1.7	730 8	2 Row	crops, SR	+ CR, Goo	od, HSG C					
2.6	606 8	5 Row	crops, SR	+ CR, Goo	pd, HSG D					
10.9	10.911 78 Weighted Average									
10.9	10.911 100.00% Pervious Area									
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
10.3	100	0.0217	0.16		Sheet Flow,					
19.6	1,108	0.0110	0.94		Cultivated: Residue>20% n= 0.170 P2= 3.34" Shallow Concentrated Flow, Cultivated Straight Rows Kv= 9.0 fps					
29.9	1,208	Total								

Subcatchment S-1: Subcat S-1

Hydrograph for Subcatchment S-1: Subcat S-1


Time	Precip.	Excess	Runoff	Time	Precip.	Excess	Runoff
(hours)	(inches)	(inches)	(cfs)	(hours)	(inches)	(inches)	(cfs)
9.00	0.97	0.05	0.23	35.00	5.15	2.84	0.00
9.50	1.03	0.07	0.30	35.50	5.15	2.84	0.00
10.00	1.09	0.08	0.38	36.00	5.15	2.84	0.00
10.50	1.16	0.10	0.43	36.50	5.15	2.84	0.00
11.00	1.23	0.13	0.48	37.00	5.15	2.84	0.00
11.50	1.30	0.15	0.56	37.50	5.15	2.84	0.00
12.00	1.39	0.19	0.68	38.00	5.15	2.84	0.00
12.50	1.48	0.22	0.79	38.50	5.15	2.84	0.00
13.00	1.57	0.26	0.85	39.00	5.15	2.84	0.00
13.50	1.65	0.30	0.89	39.50	5.15	2.84	0.00
14.00	1.73	0.34	0.87	40.00	5.15	2.84	0.00
14.50	1.80	0.38	0.80				
15.00	1.88	0.42	0.86				
15.50	1.98	0.47	1.10				
16.00	2.09	0.53	1.31				
16.50	2.19	0.59	1.30				
17.00	2.28	0.65	1.23				
17.50	2.38	0.71	1.37				
18.00	2.51	0.79	1.65				
18.50	2.65	0.89	1.97				
19.00	2.81	1.00	2.30				
19.50	2.99	1.12	2.65				
20.00	3.19	1.27	3.03				
20.50 21.00	3.41	1.43 1.62	3.41 4.02				
21.00	3.66 3.96	1.86	4.02 4.90				
21.50	4.28	2.11	4.90 5.59				
22.00	4.20	2.11	5.15				
22.50	4.55	2.54	4.42				
23.50	4.98	2.33	3.83				
23.00	5.15	2.70	3.33				
24.50	5.15	2.84	0.85				
25.00	5.15	2.84	0.07				
25.50	5.15	2.84	0.00				
26.00	5.15	2.84	0.00				
26.50	5.15	2.84	0.00				
27.00	5.15	2.84	0.00				
27.50	5.15	2.84	0.00				
28.00	5.15	2.84	0.00				
28.50	5.15	2.84	0.00				
29.00	5.15	2.84	0.00				
29.50	5.15	2.84	0.00				
30.00	5.15	2.84	0.00				
30.50	5.15	2.84	0.00				
31.00	5.15	2.84	0.00				
31.50	5.15	2.84	0.00				
32.00	5.15	2.84	0.00				
32.50	5.15	2.84	0.00				
33.00	5.15	2.84	0.00				
33.50	5.15	2.84	0.00				
34.00	5.15	2.84	0.00				
34.50	5.15	2.84	0.00				
				ļ			

Summary for Subcatchment S-2: Subcat S-2

Runoff = 6.63 cfs @ 21.82 hrs, Volume= 2.828 af, Depth> 2.47" Routed to nonexistent node 2L

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 9.00-40.00 hrs, dt= 0.10 hrs Huff B70 0-10sm 4Q scaled to 24.00 hrs 10-Year Rainfall=5.15"

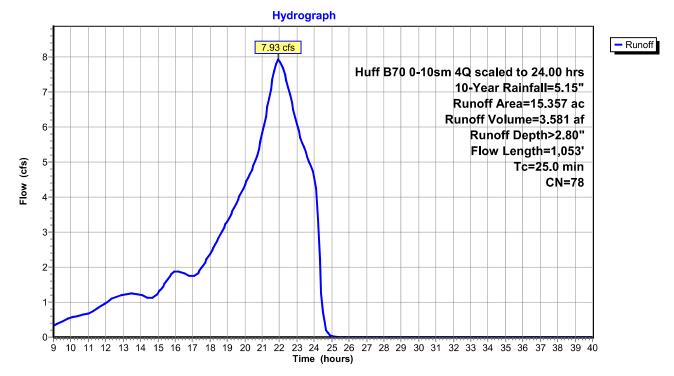
Area	(ac)	CN	Desc	cription								
4.	145	61	>75%	% Grass co	over, Good	, HSG B						
2.	099	80	>75%	5% Grass cover, Good, HSG D								
0.	286	85	Grav	avel roads, HSG B								
	007	91	Grav	avel roads, HSG D								
0.	346	98		s, HSG B								
4.	704	75			t + CR, Goo							
	124	82		• •	t + CR, Goo	•						
2.	030	85	Row	crops, SR	<u>t + CR, Goo</u>	od, HSG D						
13.	741	74	Weig	ghted Aver	age							
13.	395		97.4	8% Pervio	us Area							
0.	346		2.52	% Impervie	ous Area							
-		-			o							
TC	Length		Slope	Velocity	Capacity	Description						
(min)	(feet		(ft/ft)	(ft/sec)	(cfs)							
7.7	100) 0.	0446	0.22		Sheet Flow,						
		_				Cultivated: Residue>20% n= 0.170 P2= 3.34"						
8.6	640) 0.	0188	1.23		Shallow Concentrated Flow,						
						Cultivated Straight Rows Kv= 9.0 fps						
16.3	740) To	otal									

Subcatchment S-2: Subcat S-2

Prepared by TRC Companies HydroCAD® 10.20-3c s/n 01402 © 2023 HydroCAD Software Solutions LLC

Hydrograph for Subcatchment S-2: Subcat S-2

Time	Precip.	Excess	Runoff	Time	Precip.	Excess	Runoff
(hours)	(inches)	(inches)	(cfs)	(hours)	(inches)	(inches)	(cfs)
9.00	0.97	0.02	0.18	35.00	5.15	2.48	0.00
9.50	1.03	0.03	0.26	35.50	5.15	2.48	0.00
10.00	1.09	0.04	0.33	36.00	5.15	2.48	0.00
10.50	1.16 1.23	0.05	0.38 0.44	36.50	5.15 5.15	2.48 2.48	0.00
11.00 11.50	1.23	0.07 0.09	0.44	37.00 37.50	5.15	2.40 2.48	0.00 0.00
12.00	1.39	0.00	0.68	38.00	5.15	2.48	0.00
12.50	1.48	0.14	0.78	38.50	5.15	2.48	0.00
13.00	1.57	0.17	0.85	39.00	5.15	2.48	0.00
13.50	1.65	0.20	0.89	39.50	5.15	2.48	0.00
14.00	1.73	0.23	0.85	40.00	5.15	2.48	0.00
14.50 15.00	1.80 1.88	0.26 0.30	0.79 0.97				
15.50	1.98	0.34	1.25				
16.00	2.09	0.39	1.41				
16.50	2.19	0.44	1.35				
17.00	2.28	0.49	1.31				
17.50	2.38	0.54	1.59				
18.00 18.50	2.51 2.65	0.61 0.69	1.94 2.31				
19.00	2.81	0.79	2.71				
19.50	2.99	0.90	3.14				
20.00	3.19	1.03	3.59				
20.50	3.41	1.18	4.08				
21.00 21.50	3.66 3.96	1.35 1.57	5.00 6.10				
21.00	4.28	1.81	6.48				
22.50	4.55	2.01	5.70				
23.00	4.78	2.19	4.85				
23.50	4.98	2.35	4.27				
24.00	5.15	2.48	3.66				
24.50 25.00	5.15 5.15	2.48 2.48	0.10 0.00				
25.00	5.15	2.48	0.00				
26.00	5.15	2.48	0.00				
26.50	5.15	2.48	0.00				
27.00	5.15	2.48	0.00				
27.50	5.15	2.48	0.00				
28.00 28.50	5.15 5.15	2.48 2.48	0.00 0.00				
29.00	5.15	2.48	0.00				
29.50	5.15	2.48	0.00				
30.00	5.15	2.48	0.00				
30.50	5.15	2.48	0.00				
31.00 31.50	5.15 5.15	2.48 2.48	0.00 0.00				
31.50	5.15	2.48	0.00				
32.50	5.15	2.48	0.00				
33.00	5.15	2.48	0.00				
33.50	5.15	2.48	0.00				
34.00	5.15	2.48	0.00				
34.50	5.15	2.48	0.00				
				1			


Summary for Subcatchment S-3: Subcat S-3

Runoff = 7.93 cfs @ 21.94 hrs, Volume= 3.581 af, Depth> 2.80" Routed to nonexistent node 2L

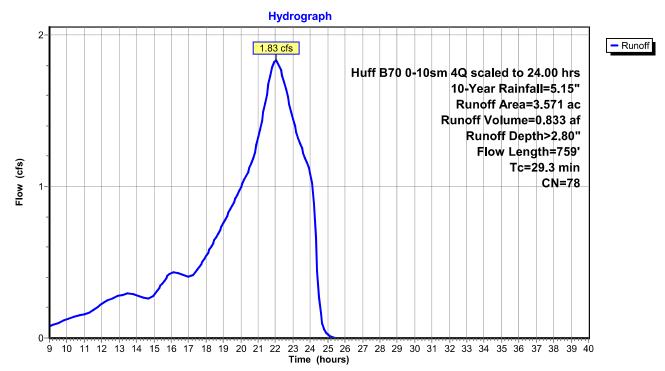
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 9.00-40.00 hrs, dt= 0.10 hrs Huff B70 0-10sm 4Q scaled to 24.00 hrs 10-Year Rainfall=5.15"

_	Area	(ac) C	N Des	cription							
	10.896 75 Row crops, SR + CR, Good, HSG B										
	0.245 82 Row crops, SR + CR, Good, HSG C										
	4.215 85 Row crops, SR + CR, Good, HSG D										
	15.357 78 Weighted Average										
	15.357 100.00% Pervious Area										
	Тс	Length	Slope	Velocity	Capacity	Description					
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	6.3	100	0.0723	0.26		Sheet Flow,					
						Cultivated: Residue>20% n= 0.170 P2= 3.34"					
	18.7	953	0.0089	0.85		Shallow Concentrated Flow,					
						Cultivated Straight Rows Kv= 9.0 fps					
_	25.0	1,053	Total								

Subcatchment S-3: Subcat S-3

Hydrograph for Subcatchment S-3: Subcat S-3

Time	Precip.	Excess	Runoff	Time	Precip.	Excess	Runoff
(hours)	(inches)	(inches)	(cfs)	(hours)	(inches)	(inches)	(cfs)
9.00	0.97	0.05	0.34	35.00	5.15	2.84	0.00
9.50	1.03	0.07	0.44	35.50	5.15	2.84	0.00
10.00	1.09	0.08	0.55	36.00	5.15	2.84	0.00
10.50	1.16	0.10	0.62	36.50	5.15	2.84	0.00
11.00	1.23	0.13	0.68	37.00	5.15	2.84	0.00
11.50	1.30 1.39	0.15 0.19	0.81	37.50 38.00	5.15	2.84 2.84	0.00
12.00 12.50	1.39	0.19	0.98 1.12	38.50	5.15 5.15	2.84 2.84	0.00 0.00
12.50	1.40	0.22	1.12	39.00	5.15	2.84	0.00
13.50	1.65	0.20	1.26	39.50	5.15	2.84	0.00
14.00	1.73	0.34	1.20	40.00	5.15	2.84	0.00
14.50	1.80	0.38	1.11		01.0	_10 .	0.00
15.00	1.88	0.42	1.25				
15.50	1.98	0.47	1.60				
16.00	2.09	0.53	1.88				
16.50	2.19	0.59	1.82				
17.00	2.28	0.65	1.72				
17.50	2.38	0.71	1.97				
18.00	2.51	0.79	2.39				
18.50	2.65	0.89 1.00	2.84				
19.00 19.50	2.81 2.99	1.00	3.31 3.81				
20.00	3.19	1.12	4.34				
20.50	3.41	1.43	4.89				
21.00	3.66	1.62	5.82				
21.50	3.96	1.86	7.09				
22.00	4.28	2.11	7.91				
22.50	4.55	2.34	7.12				
23.00	4.78	2.53	6.07				
23.50	4.98	2.70	5.28				
24.00	5.15	2.84	4.58				
24.50	5.15	2.84	0.69				
25.00	5.15	2.84 2.84	0.03 0.00				
25.50 26.00	5.15 5.15	2.84 2.84	0.00				
26.50	5.15	2.84	0.00				
27.00	5.15	2.84	0.00				
27.50	5.15	2.84	0.00				
28.00	5.15	2.84	0.00				
28.50	5.15	2.84	0.00				
29.00	5.15	2.84	0.00				
29.50	5.15	2.84	0.00				
30.00	5.15	2.84	0.00				
30.50	5.15	2.84	0.00				
31.00	5.15	2.84	0.00				
31.50 32.00	5.15 5.15	2.84 2.84	0.00 0.00				
32.00	5.15	2.84 2.84	0.00				
33.00	5.15	2.84	0.00				
33.50	5.15	2.84	0.00				
34.00	5.15	2.84	0.00				
34.50	5.15	2.84	0.00				


Summary for Subcatchment S-4: Subcat S-4

Runoff = 1.83 cfs @ 22.01 hrs, Volume= 0.833 af, Depth> 2.80" Routed to nonexistent node 2L

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 9.00-40.00 hrs, dt= 0.10 hrs Huff B70 0-10sm 4Q scaled to 24.00 hrs 10-Year Rainfall=5.15"

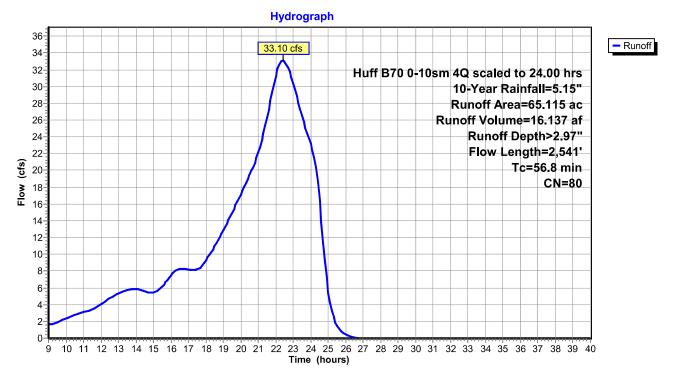
Area	(ac) C	N Dese	cription								
2	499 7	'5 Row	crops, SR	+ CR, Goo	od, HSG B						
1.	073 8	35 Row	crops, SR	+ CR, Goo	pd, HSG D						
3.	571 7	'8 Weig	ghted Aver	age							
3.	3.571 100.00% Pervious Area										
Тс	Length	Slope	Velocity	Capacity	Description						
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)							
13.6	100	0.0107	0.12		Sheet Flow,						
					Cultivated: Residue>20%						
11.6	447	0.0051	0.64		Shallow Concentrated Flow,						
					Cultivated Straight Rows Kv= 9.0 fps						
4.1	212	0.0092	0.86		Shallow Concentrated Flow,						
					Cultivated Straight Rows Kv= 9.0 fps						
29.3	759	Total									

Subcatchment S-4: Subcat S-4

Prepared by TRC Companies HydroCAD® 10.20-3c s/n 01402 © 2023 HydroCAD Software Solutions LLC

Hydrograph for Subcatchment S-4: Subcat S-4

TimePrecip.ExcessRunoff (hours)TimePrecip.ExcessRunoff (hours)(inches)								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								
9.50 1.03 0.07 0.10 35.50 5.15 2.84 0.00 10.50 1.16 0.10 0.14 36.50 5.15 2.84 0.00 11.00 1.23 0.13 0.16 37.00 5.15 2.84 0.00 11.00 1.23 0.13 0.16 37.00 5.15 2.84 0.00 12.00 1.39 0.19 0.22 38.00 5.15 2.84 0.00 12.50 1.48 0.22 0.26 38.50 5.15 2.84 0.00 13.50 1.57 0.26 0.28 39.00 5.15 2.84 0.00 13.50 1.65 0.30 0.29 39.50 5.15 2.84 0.00 14.00 1.73 0.34 0.28 40.00 5.15 2.84 0.00 14.50 1.80 0.38 0.26 39.00 5.15 2.84 0.00 14.50 1.80 0.38 0.26 1.62 1.32 2.84 0.00 14.50 1.80 0.47 0.36 1.62 1.32 2.84 0.00 15.50 1.98 0.47 0.36 1.62 1.82 1.62 1.82 15.50 1.98 0.47 0.36 1.62 1.82 1.62 1.82 17.00 2.28 0.65 0.40 1.75 2.84 0.02 19.50 3.19 1.27 0.99 2.53 1.41 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
12.50 1.48 0.22 0.26 38.50 5.15 2.84 0.00 13.00 1.57 0.26 0.28 39.00 5.15 2.84 0.00 13.50 1.65 0.30 0.29 39.50 5.15 2.84 0.00 14.00 1.73 0.34 0.28 40.00 5.15 2.84 0.00 14.50 1.80 0.38 0.26 40.00 5.15 2.84 0.00 14.50 1.80 0.38 0.26 40.00 5.15 2.84 0.00 14.50 1.80 0.47 0.36 16.00 2.09 0.53 0.43 16.00 2.09 0.53 0.43 17.50 2.38 0.71 0.45 18.50 2.65 0.89 0.65 19.00 2.76 1.86 1.61 19.00 2.81 1.00 0.76 19.50 2.99 1.12 0.87 20.00 3.19 1.27 0.99 2.53 1.44 2.350 4.98 2.70 1.25 24.00 5.15 2.84 0.02 2.550 5.15 2.84 0.02 25.50 5.15 2.84 0.00 28.00 5.15 2.84 0.00 27.00 5.15 2.84 0.00 28.50 5.15 2.84 0.00 28.50 5.15 2.84 0.00 28.50 5.15 2.84 0.00 29.00 5.15 $2.$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
14.50 1.80 0.38 0.26 15.00 1.88 0.42 0.28 15.50 1.98 0.47 0.36 16.00 2.09 0.53 0.43 16.50 2.19 0.59 0.43 17.00 2.28 0.65 0.40 17.50 2.38 0.71 0.45 18.00 2.51 0.79 0.54 18.50 2.65 0.89 0.65 19.00 2.81 1.00 0.76 19.50 2.99 1.12 0.87 20.00 3.19 1.27 0.99 20.50 3.41 1.43 1.12 21.00 3.66 1.62 1.32 21.50 3.96 1.86 1.61 22.00 4.28 2.11 1.83 22.50 4.55 2.34 1.68 23.00 4.78 2.53 1.44 23.50 4.98 2.70 1.25 24.00 5.15 2.84 0.02 25.50 5.15 2.84 0.00 26.50 5.15 2.84 0.00 27.50 5.15 2.84 0.00 28.50 5.15 2.84 0.00 29.00 5.15 2.84 0.00 29.00 5.15 2.84 0.00 29.00 5.15 2.84 0.00 29.00 5.15 2.84 0.00 29.00 5.15 2.84 0.00 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
15.00 1.88 0.42 0.28 15.50 1.98 0.47 0.36 16.00 2.09 0.53 0.43 16.50 2.19 0.59 0.43 17.00 2.28 0.65 0.40 17.50 2.38 0.71 0.45 18.00 2.51 0.79 0.54 18.00 2.51 0.79 0.54 18.50 2.65 0.89 0.65 19.00 2.81 1.00 0.76 19.50 2.99 1.12 0.87 20.00 3.19 1.27 0.99 20.50 3.41 1.43 1.12 21.00 3.66 1.62 1.32 21.50 3.96 1.86 1.61 22.00 4.28 2.11 1.83 22.50 4.55 2.34 1.68 23.00 4.78 2.53 1.44 23.50 4.98 2.70 1.25 24.00 5.15 2.84 0.00 26.00 5.15 2.84 0.00 26.00 5.15 2.84 0.00 27.50 5.15 2.84 0.00 28.00 5.15 2.84 0.00 29.00 5.15 2.84 0.00 29.00 5.15 2.84 0.00 29.00 5.15 2.84 0.00 30.00 5.15 2.84 0.00 30.00 5.15 2.84 0.00 <td< td=""><td></td><td></td><td></td><td></td><td>40.00</td><td>5.15</td><td>2.84</td><td>0.00</td></td<>					40.00	5.15	2.84	0.00
15.50 1.98 0.47 0.36 16.00 2.09 0.53 0.43 16.50 2.19 0.59 0.43 17.00 2.28 0.65 0.40 17.50 2.38 0.71 0.45 18.00 2.51 0.79 0.54 18.00 2.51 0.79 0.54 18.50 2.65 0.89 0.65 19.00 2.81 1.00 0.76 19.50 2.99 1.12 0.87 20.00 3.19 1.27 0.99 20.50 3.41 1.43 1.12 21.00 3.66 1.62 1.32 21.50 3.96 1.86 1.61 22.00 4.28 2.11 1.83 22.50 4.55 2.34 1.68 23.00 4.78 2.53 1.44 23.50 4.98 2.70 1.25 24.00 5.15 2.84 0.02 25.50 5.15 2.84 0.00 26.00 5.15 2.84 0.00 26.00 5.15 2.84 0.00 27.50 5.15 2.84 0.00 28.00 5.15 2.84 0.00 29.00 5.15 2.84 0.00 30.00 5.15 2.84 0.00 30.00 5.15 2.84 0.00 30.00 5.15 2.84 0.00 31.00 5.15 2.84 0.00 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
16.00 2.09 0.53 0.43 16.50 2.19 0.59 0.43 17.50 2.28 0.65 0.40 17.50 2.38 0.71 0.45 18.00 2.51 0.79 0.54 18.50 2.65 0.89 0.65 19.00 2.81 1.00 0.76 19.50 2.99 1.12 0.87 20.00 3.19 1.27 0.99 20.50 3.41 1.43 1.12 21.00 3.66 1.62 1.32 21.50 3.96 1.86 1.61 22.00 4.28 2.11 1.83 22.50 4.55 2.34 1.68 23.00 4.78 2.53 1.44 23.50 4.98 2.70 1.25 24.00 5.15 2.84 0.02 25.50 5.15 2.84 0.02 25.50 5.15 2.84 0.00 26.00 5.15 2.84 0.00 27.00 5.15 2.84 0.00 28.00 5.15 2.84 0.00 29.00 5.15 2.84 0.00 29.00 5.15 2.84 0.00 29.00 5.15 2.84 0.00 30.00 5.15 2.84 0.00 30.00 5.15 2.84 0.00 30.00 5.15 2.84 0.00 31.00 5.15 2.84 0.00 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
16.50 2.19 0.59 0.43 17.00 2.28 0.65 0.40 17.50 2.38 0.71 0.45 18.00 2.51 0.79 0.54 18.50 2.65 0.89 0.65 19.00 2.81 1.00 0.76 19.50 2.99 1.12 0.87 20.00 3.19 1.27 0.99 20.50 3.41 1.43 1.12 21.00 3.66 1.62 1.32 21.50 3.96 1.86 1.61 22.00 4.28 2.11 1.83 22.50 4.55 2.34 1.68 23.00 4.78 2.53 1.44 23.50 4.98 2.70 1.25 24.00 5.15 2.84 0.02 25.50 5.15 2.84 0.00 26.50 5.15 2.84 0.00 26.50 5.15 2.84 0.00 27.50 5.15 2.84 0.00 28.00 5.15 2.84 0.00 29.50 5.15 2.84 0.00 29.50 5.15 2.84 0.00 29.50 5.15 2.84 0.00 30.00 5.15 2.84 0.00 30.00 5.15 2.84 0.00 31.00 5.15 2.84 0.00 32.00 5.15 2.84 0.00								
17.00 2.28 0.65 0.40 17.50 2.38 0.71 0.45 18.00 2.51 0.79 0.54 18.50 2.65 0.89 0.65 19.00 2.81 1.00 0.76 19.50 2.99 1.12 0.87 20.00 3.19 1.27 0.99 20.50 3.41 1.43 1.12 21.00 3.66 1.62 1.32 21.50 3.96 1.86 1.61 22.00 4.28 2.11 1.83 22.50 4.55 2.34 1.68 23.00 4.78 2.53 1.44 23.50 4.98 2.70 1.25 24.00 5.15 2.84 0.02 25.50 5.15 2.84 0.02 25.50 5.15 2.84 0.00 26.50 5.15 2.84 0.00 26.50 5.15 2.84 0.00 28.00 5.15 2.84 0.00 28.00 5.15 2.84 0.00 29.50 5.15 2.84 0.00 29.50 5.15 2.84 0.00 29.50 5.15 2.84 0.00 30.00 5.15 2.84 0.00 31.00 5.15 2.84 0.00 31.00 5.15 2.84 0.00 31.00 5.15 2.84 0.00 32.00 5.15 2.84 0.00 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
17.50 2.38 0.71 0.45 18.00 2.51 0.79 0.54 18.50 2.65 0.89 0.65 19.00 2.81 1.00 0.76 19.50 2.99 1.12 0.87 20.00 3.19 1.27 0.99 20.50 3.41 1.43 1.12 21.00 3.66 1.62 1.32 21.50 3.96 1.86 1.61 22.00 4.28 2.11 1.83 22.50 4.55 2.34 1.68 23.00 4.78 2.53 1.44 23.50 4.98 2.70 1.25 24.00 5.15 2.84 0.02 25.50 5.15 2.84 0.02 25.50 5.15 2.84 0.00 26.50 5.15 2.84 0.00 27.00 5.15 2.84 0.00 28.00 5.15 2.84 0.00 28.00 5.15 2.84 0.00 29.00 5.15 2.84 0.00 29.00 5.15 2.84 0.00 29.00 5.15 2.84 0.00 30.00 5.15 2.84 0.00 31.00 5.15 2.84 0.00 31.00 5.15 2.84 0.00 32.00 5.15 2.84 0.00								
18.00 2.51 0.79 0.54 18.50 2.65 0.89 0.65 19.00 2.81 1.00 0.76 19.50 2.99 1.12 0.87 20.00 3.19 1.27 0.99 20.50 3.41 1.43 1.12 21.00 3.66 1.62 1.32 21.50 3.96 1.86 1.61 22.00 4.28 2.11 1.83 22.50 4.55 2.34 1.68 23.00 4.78 2.53 1.44 23.50 4.98 2.70 1.25 24.00 5.15 2.84 0.02 25.50 5.15 2.84 0.00 26.50 5.15 2.84 0.00 26.50 5.15 2.84 0.00 27.50 5.15 2.84 0.00 28.00 5.15 2.84 0.00 28.00 5.15 2.84 0.00 28.00 5.15 2.84 0.00 29.00 5.15 2.84 0.00 29.50 5.15 2.84 0.00 30.00 5.15 2.84 0.00 31.00 5.15 2.84 0.00 31.00 5.15 2.84 0.00 31.00 5.15 2.84 0.00 32.00 5.15 2.84 0.00								
18.50 2.65 0.89 0.65 19.00 2.81 1.00 0.76 19.50 2.99 1.12 0.87 20.00 3.19 1.27 0.99 20.50 3.41 1.43 1.12 21.00 3.66 1.62 1.32 21.50 3.96 1.86 1.61 22.00 4.28 2.11 1.83 22.50 4.55 2.34 1.68 23.00 4.78 2.53 1.44 23.50 4.98 2.70 1.25 24.00 5.15 2.84 0.02 25.50 5.15 2.84 0.02 25.50 5.15 2.84 0.00 26.00 5.15 2.84 0.00 27.00 5.15 2.84 0.00 27.00 5.15 2.84 0.00 28.50 5.15 2.84 0.00 29.00 5.15 2.84 0.00 29.00 5.15 2.84 0.00 29.00 5.15 2.84 0.00 30.00 5.15 2.84 0.00 30.50 5.15 2.84 0.00 31.00 5.15 2.84 0.00 31.00 5.15 2.84 0.00 32.00 5.15 2.84 0.00								
19.00 2.81 1.00 0.76 19.50 2.99 1.12 0.87 20.00 3.19 1.27 0.99 20.50 3.41 1.43 1.12 21.00 3.66 1.62 1.32 21.50 3.96 1.86 1.61 22.00 4.28 2.11 1.83 22.50 4.55 2.34 1.68 23.00 4.78 2.53 1.44 23.50 4.98 2.70 1.25 24.00 5.15 2.84 0.27 25.00 5.15 2.84 0.02 25.50 5.15 2.84 0.00 26.50 5.15 2.84 0.00 26.50 5.15 2.84 0.00 27.00 5.15 2.84 0.00 28.00 5.15 2.84 0.00 29.00 5.15 2.84 0.00 29.00 5.15 2.84 0.00 29.00 5.15 2.84 0.00 30.00 5.15 2.84 0.00 30.00 5.15 2.84 0.00 31.00 5.15 2.84 0.00 31.00 5.15 2.84 0.00 31.50 5.15 2.84 0.00 32.00 5.15 2.84 0.00								
19.50 2.99 1.12 0.87 20.00 3.19 1.27 0.99 20.50 3.41 1.43 1.12 21.00 3.66 1.62 1.32 21.50 3.96 1.86 1.61 22.00 4.28 2.11 1.83 22.50 4.55 2.34 1.68 23.00 4.78 2.53 1.44 23.50 4.98 2.70 1.25 24.00 5.15 2.84 0.02 25.50 5.15 2.84 0.02 25.50 5.15 2.84 0.00 26.00 5.15 2.84 0.00 26.00 5.15 2.84 0.00 26.50 5.15 2.84 0.00 27.00 5.15 2.84 0.00 28.00 5.15 2.84 0.00 29.00 5.15 2.84 0.00 29.50 5.15 2.84 0.00 29.50 5.15 2.84 0.00 30.00 5.15 2.84 0.00 30.00 5.15 2.84 0.00 31.00 5.15 2.84 0.00 31.50 5.15 2.84 0.00 31.50 5.15 2.84 0.00 32.00 5.15 2.84 0.00								
20.00 3.19 1.27 0.99 20.50 3.41 1.43 1.12 21.00 3.66 1.62 1.32 21.50 3.96 1.86 1.61 22.00 4.28 2.11 1.83 22.50 4.55 2.34 1.68 23.00 4.78 2.53 1.44 23.50 4.98 2.70 1.25 24.00 5.15 2.84 0.02 24.50 5.15 2.84 0.02 25.50 5.15 2.84 0.00 26.00 5.15 2.84 0.00 26.50 5.15 2.84 0.00 26.50 5.15 2.84 0.00 27.00 5.15 2.84 0.00 28.00 5.15 2.84 0.00 28.00 5.15 2.84 0.00 29.00 5.15 2.84 0.00 29.50 5.15 2.84 0.00 30.00 5.15 2.84 0.00 30.50 5.15 2.84 0.00 31.00 5.15 2.84 0.00 31.50 5.15 2.84 0.00 31.50 5.15 2.84 0.00 31.50 5.15 2.84 0.00 32.00 5.15 2.84 0.00								
20.50 3.41 1.43 1.12 21.00 3.66 1.62 1.32 21.50 3.96 1.86 1.61 22.00 4.28 2.11 1.83 22.50 4.55 2.34 1.68 23.00 4.78 2.53 1.44 23.50 4.98 2.70 1.25 24.00 5.15 2.84 0.02 25.50 5.15 2.84 0.02 25.50 5.15 2.84 0.00 26.00 5.15 2.84 0.00 26.00 5.15 2.84 0.00 26.50 5.15 2.84 0.00 27.00 5.15 2.84 0.00 28.00 5.15 2.84 0.00 28.00 5.15 2.84 0.00 29.00 5.15 2.84 0.00 29.00 5.15 2.84 0.00 30.00 5.15 2.84 0.00 31.00 5.15 2.84 0.00 31.50 5.15 2.84 0.00 31.50 5.15 2.84 0.00 31.50 5.15 2.84 0.00 32.00 5.15 2.84 0.00								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
22.00 4.28 2.11 1.83 22.50 4.55 2.34 1.68 23.00 4.78 2.53 1.44 23.50 4.98 2.70 1.25 24.00 5.15 2.84 1.09 24.50 5.15 2.84 0.27 25.00 5.15 2.84 0.02 25.50 5.15 2.84 0.00 26.00 5.15 2.84 0.00 26.50 5.15 2.84 0.00 27.00 5.15 2.84 0.00 28.00 5.15 2.84 0.00 28.00 5.15 2.84 0.00 29.00 5.15 2.84 0.00 29.50 5.15 2.84 0.00 30.00 5.15 2.84 0.00 31.00 5.15 2.84 0.00 31.50 5.15 2.84 0.00 32.00 5.15 2.84 0.00								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
29.005.152.840.0029.505.152.840.0030.005.152.840.0030.505.152.840.0031.005.152.840.0031.505.152.840.0032.005.152.840.00			2.84					
29.505.152.840.0030.005.152.840.0030.505.152.840.0031.005.152.840.0031.505.152.840.0032.005.152.840.00	28.50	5.15	2.84	0.00				
30.005.152.840.0030.505.152.840.0031.005.152.840.0031.505.152.840.0032.005.152.840.00	29.00	5.15	2.84	0.00				
30.505.152.840.0031.005.152.840.0031.505.152.840.0032.005.152.840.00	29.50	5.15	2.84	0.00				
31.005.152.840.0031.505.152.840.0032.005.152.840.00	30.00	5.15	2.84	0.00				
31.50 5.15 2.84 0.00 32.00 5.15 2.84 0.00	30.50	5.15	2.84	0.00				
32.00 5.15 2.84 0.00								
32.50 5.15 2.84 0.00								
33.00 5.15 2.84 0.00								
33.50 5.15 2.84 0.00								
34.00 5.15 2.84 0.00								
34.50 5.15 2.84 0.00	34.50	5.15	2.84	0.00				


Summary for Subcatchment S-5: Subcat S-5

Runoff = 33.10 cfs @ 22.41 hrs, Volume= 16.137 af, Depth> 2.97" Routed to nonexistent node 2L

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 9.00-40.00 hrs, dt= 0.10 hrs Huff B70 0-10sm 4Q scaled to 24.00 hrs 10-Year Rainfall=5.15"

Area	(ac) (CN Des	cription							
22.	946	75 Row	/ crops, SF	R + CR, Goo	od, HSG B					
4.	.335			R + CR, Goo						
32.	32.826 85 Row crops, SR + CR, Good, HSG D									
	4.661 73 Woods, Fair, HSG C									
0.	0.347 79 Woods, Fair, HSG D									
65.	65.115 80 Weighted Average									
65.	65.115 100.00% Pervious Area									
		_		_						
Tc	Length	•	Velocity	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
9.9	100	0.0238	0.17		Sheet Flow,					
					Cultivated: Residue>20%					
5.5	380	0.0165	1.16		Shallow Concentrated Flow,					
					Cultivated Straight Rows Kv= 9.0 fps					
41.4	2,061	0.0085	0.83		Shallow Concentrated Flow,					
					Cultivated Straight Rows Kv= 9.0 fps					
56.8	2,541	Total								

Subcatchment S-5: Subcat S-5

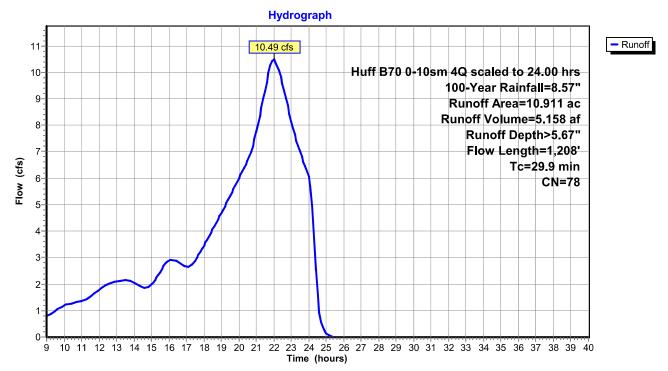
Prepared by TRC Companies HydroCAD® 10.20-3c s/n 01402 © 2023 HydroCAD Software Solutions LLC

Hydrograph for Subcatchment S-5: Subcat S-5

Time	Precip.	Excess	Runoff	Time	Precip.	Excess	Runoff
(hours)	(inches)	(inches)	(cfs)	(hours)	(inches)	(inches)	(cfs)
9.00	0.97	0.07	1.63	35.00	5.15	3.02	0.00
9.50 10.00	1.03	0.09	1.88	35.50 36.00	5.15	3.02	0.00
10.00	1.09 1.16	0.11 0.14	2.35 2.79	36.50	5.15 5.15	3.02 3.02	0.00 0.00
11.00	1.10	0.14	3.10	37.00	5.15	3.02	0.00
11.50	1.23	0.10	3.44	37.50	5.15	3.02	0.00
12.00	1.39	0.23	4.03	38.00	5.15	3.02	0.00
12.50	1.48	0.20	4.76	38.50	5.15	3.02	0.00
13.00	1.57	0.32	5.33	39.00	5.15	3.02	0.00
13.50	1.65	0.36	5.71	39.50	5.15	3.02	0.00
14.00	1.73	0.41	5.83	40.00	5.15	3.02	0.00
14.50	1.80	0.45	5.59				
15.00	1.88	0.49	5.38				
15.50	1.98	0.55	6.12				
16.00	2.09	0.62	7.47				
16.50	2.19	0.68	8.28				
17.00	2.28	0.74	8.18				
17.50	2.38	0.81	8.17				
18.00	2.51	0.89	9.25				
18.50 19.00	2.65 2.81	0.99 1.11	10.94 12.88				
19.00	2.01	1.24	12.88				
20.00	3.19	1.39	17.14				
20.50	3.41	1.56	19.42				
21.00	3.66	1.77	22.10				
21.50	3.96	2.01	26.28				
22.00	4.28	2.28	31.26				
22.50	4.55	2.51	33.01				
23.00	4.78	2.70	30.41				
23.50	4.98	2.88	26.54				
24.00	5.15	3.02	23.13				
24.50	5.15	3.02	16.39				
25.00	5.15	3.02	5.41				
25.50 26.00	5.15 5.15	3.02 3.02	1.46 0.38				
26.50	5.15	3.02	0.38				
27.00	5.15	3.02	0.00				
27.50	5.15	3.02	0.00				
28.00	5.15	3.02	0.00				
28.50	5.15	3.02	0.00				
29.00	5.15	3.02	0.00				
29.50	5.15	3.02	0.00				
30.00	5.15	3.02	0.00				
30.50	5.15	3.02	0.00				
31.00	5.15	3.02	0.00				
31.50	5.15	3.02	0.00				
32.00 32.50	5.15 5.15	3.02 3.02	0.00 0.00				
32.50	5.15	3.02	0.00				
33.50	5.15	3.02	0.00				
34.00	5.15	3.02	0.00				
34.50	5.15	3.02	0.00				

Time span=9.00-40.00 hrs, dt=0.10 hrs, 311 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment S-1: Subcat S-1	Runoff Area=10.911 ac 0.00% Impervious Runoff Depth>5.67" Flow Length=1,208' Tc=29.9 min CN=78 Runoff=10.49 cfs 5.158 af						
Subcatchment S-2: Subcat S-2	Runoff Area=13.741 ac 2.52% Impervious Runoff Depth>5.27" Flow Length=740' Tc=16.3 min CN=74 Runoff=12.94 cfs 6.033 af						
Subcatchment S-3: Subcat S-3	Runoff Area=15.357 ac 0.00% Impervious Runoff Depth>5.67" Flow Length=1,053' Tc=25.0 min CN=78 Runoff=14.88 cfs 7.253 af						
Subcatchment S-4: Subcat S-4	Runoff Area=3.571 ac 0.00% Impervious Runoff Depth>5.67" Flow Length=759' Tc=29.3 min CN=78 Runoff=3.44 cfs 1.688 af						
Subcatchment S-5: Subcat S-5	Runoff Area=65.115 ac 0.00% Impervious Runoff Depth>5.89" Flow Length=2,541' Tc=56.8 min CN=80 Runoff=61.07 cfs 31.978 af						
Total Runoff Area = 108.695 ac Runoff Volume = 52.110 af Average Runoff Depth = 5.75" 99.68% Pervious = 108.349 ac 0.32% Impervious = 0.346 ac							


Summary for Subcatchment S-1: Subcat S-1

Runoff = 10.49 cfs @ 22.00 hrs, Volume= 5.158 af, Depth> 5.67" Routed to nonexistent node 2L

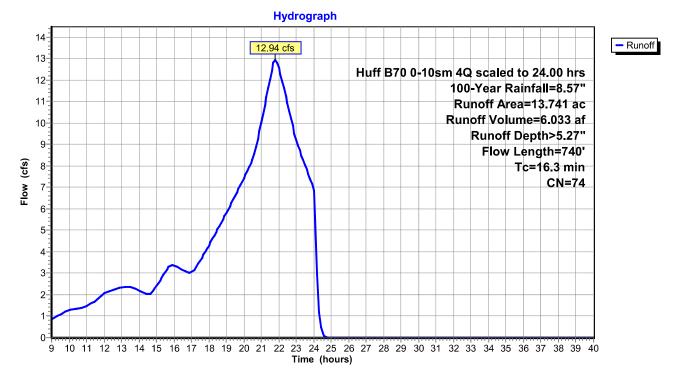
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 9.00-40.00 hrs, dt= 0.10 hrs Huff B70 0-10sm 4Q scaled to 24.00 hrs 100-Year Rainfall=8.57"

_	Area	(ac)	CN	Desc	ription					
	0.	026	61	>75%	6 Grass co	over, Good	, HSG B			
	6.549 75 Row crops, SR + CR, Go						od, HSG B			
1.730 82				Row	Row crops, SR + CR, Good, HSG C					
	2.	606	85	Row	crops, SR	: + CR, Goo	od, HSG D			
10.911 78 Weighted Average										
	10.911 100.00% Pervious Area									
	Тс	Lengt	h	Slope	Velocity	Capacity	Description			
	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)				
	10.3	10	0 0	0.0217	0.16		Sheet Flow,			
							Cultivated: Residue>20%			
	19.6	1,10	8 0	0.0110	0.94		Shallow Concentrated Flow,			
							Cultivated Straight Rows Kv= 9.0 fps			
	29.9	1,20	8 1	Fotal						

Subcatchment S-1: Subcat S-1

Prepared by TRC Companies HydroCAD® 10.20-3c s/n 01402 © 2023 HydroCAD Software Solutions LLC ~ ~ ~ 0.1 . . _ . Hy .

yd	lrograph	for Su	bcatc	hment	S-1:	Subcat	S-1	
ya	irograpn	tor Su	bcatc	nment	5-1:	Subcat	5-1	


Time	Precip.	Excess	Runoff	Time	Precip.	Excess	Runoff
(hours)	(inches)	(inches)	(cfs)	(hours)	(inches)	(inches)	(cfs)
9.00	1.61	0.28	0.81	35.00	8.57	5.92	0.00
9.50	1.71	0.33	0.99	35.50	8.57	5.92	0.00
10.00	1.82	0.39	1.19	36.00	8.57	5.92	0.00
10.50	1.93	0.45	1.28	36.50	8.57	5.92	0.00
11.00 11.50	2.04 2.17	0.51 0.58	1.35 1.52	37.00 37.50	8.57 8.57	5.92 5.92	0.00 0.00
12.00	2.17	0.58	1.52	38.00	8.57	5.92	0.00
12.50	2.46	0.76	2.01	38.50	8.57	5.92	0.00
13.00	2.61	0.86	2.10	39.00	8.57	5.92	0.00
13.50	2.75	0.95	2.16	39.50	8.57	5.92	0.00
14.00	2.88	1.05	2.05	40.00	8.57	5.92	0.00
14.50	3.00	1.13	1.86				
15.00	3.13	1.22	1.97				
15.50	3.29	1.34	2.47				
16.00	3.47	1.48	2.90				
16.50	3.64	1.60	2.83				
17.00	3.79	1.72	2.64				
17.50 18.00	3.97	1.86	2.89				
18.50	4.17 4.41	2.03 2.22	3.45 4.06				
19.00	4.68	2.44	4.68				
19.50	4.98	2.69	5.33				
20.00	5.31	2.98	5.99				
20.50	5.67	3.29	6.67				
21.00	6.09	3.66	7.75				
21.50	6.60	4.11	9.31				
22.00	7.12	4.59	10.49				
22.50	7.58	5.00	9.57				
23.00	7.96	5.35	8.15				
23.50 24.00	8.29	5.66	7.01 6.07				
24.00	8.57 8.57	5.92 5.92	1.55				
25.00	8.57	5.92	0.13				
25.50	8.57	5.92	0.00				
26.00	8.57	5.92	0.00				
26.50	8.57	5.92	0.00				
27.00	8.57	5.92	0.00				
27.50	8.57	5.92	0.00				
28.00	8.57	5.92	0.00				
28.50	8.57	5.92	0.00				
29.00	8.57	5.92	0.00				
29.50 30.00	8.57 8.57	5.92 5.92	0.00 0.00				
30.50	8.57	5.92	0.00				
31.00	8.57	5.92	0.00				
31.50	8.57	5.92	0.00				
32.00	8.57	5.92	0.00				
32.50	8.57	5.92	0.00				
33.00	8.57	5.92	0.00				
33.50	8.57	5.92	0.00				
34.00	8.57	5.92	0.00				
34.50	8.57	5.92	0.00				
				I			

Summary for Subcatchment S-2: Subcat S-2

Runoff = 12.94 cfs @ 21.80 hrs, Volume= 6.033 af, Depth> 5.27" Routed to nonexistent node 2L

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 9.00-40.00 hrs, dt= 0.10 hrs Huff B70 0-10sm 4Q scaled to 24.00 hrs 100-Year Rainfall=8.57"

Area	(ac)	CN	Desc	cription								
4.	145	61	>75%	% Grass co	over, Good	, HSG B						
2.	099	99 80 >75% Grass cover, Good, HSG D										
0.	286	85	Grav	avel roads, HSG B								
	007	91	Grav	el roads, ł	HSG D							
0.	346	98		s, HSG B								
4.	704	75			t + CR, Goo							
	124	82			t + CR, Goo							
2.	030	85	Row	crops, SR	: + CR, Goo	od, HSG D						
13.	741	74	Weig	ghted Aver	age							
13.	395		- · ·	8% Pervio								
0.	346		2.52	% Impervi	ous Area							
-		~			0 1							
TC	Length		lope	Velocity	Capacity	Description						
(min)	(feet)		(ft/ft)	(ft/sec)	(cfs)							
7.7	100	0.0	0446	0.22		Sheet Flow,						
				4.00		Cultivated: Residue>20% n= 0.170 P2= 3.34"						
8.6	640	0.0	0188	1.23		Shallow Concentrated Flow,						
						Cultivated Straight Rows Kv= 9.0 fps						
16.3	740	То	tal									

Subcatchment S-2: Subcat S-2

Hydrograph for Subcatchment S-2: Subcat S-2

-	. .	_			<u>ь</u> .	-	- <i>"</i>
Time	Precip.	Excess	Runoff	Time	Precip.	Excess	Runoff
<u>(hours)</u> 9.00	(inches) 1.61	(inches)	(cfs)	<u>(hours)</u> 35.00	(inches)	(inches) 5.44	(cfs)
9.00	1.71	0.19 0.22	0.86 1.08	35.00	8.57 8.57	5.44 5.44	0.00 0.00
10.00	1.82	0.22	1.00	36.00	8.57	5.44	0.00
10.50	1.93	0.32	1.36	36.50	8.57	5.44	0.00
11.00	2.04	0.37	1.45	37.00	8.57	5.44	0.00
11.50	2.17	0.43	1.72	37.50	8.57	5.44	0.00
12.00	2.31	0.50	2.04	38.00	8.57	5.44	0.00
12.50	2.46	0.58	2.23	38.50	8.57	5.44	0.00
13.00	2.61	0.67	2.34	39.00	8.57	5.44	0.00
13.50	2.75	0.75	2.37	39.50	8.57	5.44	0.00
14.00	2.88	0.83	2.20	40.00	8.57	5.44	0.00
14.50	3.00	0.91	2.00				
15.00	3.13	0.99	2.42				
15.50	3.29	1.10	3.05				
16.00	3.47	1.22	3.36				
16.50	3.64	1.34	3.16				
17.00	3.79	1.45	3.00				
17.50	3.97 4.17	1.57	3.59				
18.00 18.50	4.17	1.73 1.90	4.30 5.04				
19.00	4.68	2.11	5.81				
19.50	4.98	2.35	6.61				
20.00	5.31	2.61	7.44				
20.50	5.67	2.91	8.30				
21.00	6.09	3.26	10.02				
21.50	6.60	3.69	12.03				
22.00	7.12	4.15	12.58				
22.50	7.58	4.55	10.93				
23.00	7.96	4.89	9.21				
23.50	8.29	5.18	8.06				
24.00	8.57	5.44	6.86				
24.50	8.57	5.44	0.19				
25.00	8.57	5.44	0.00				
25.50	8.57	5.44	0.00				
26.00	8.57	5.44	0.00				
26.50 27.00	8.57 8.57	5.44 5.44	0.00 0.00				
27.50	8.57	5.44 5.44	0.00				
28.00	8.57	5.44	0.00				
28.50	8.57	5.44	0.00				
29.00	8.57	5.44	0.00				
29.50	8.57	5.44	0.00				
30.00	8.57	5.44	0.00				
30.50	8.57	5.44	0.00				
31.00	8.57	5.44	0.00				
31.50	8.57	5.44	0.00				
32.00	8.57	5.44	0.00				
32.50	8.57	5.44	0.00				
33.00	8.57	5.44	0.00				
33.50	8.57	5.44	0.00 0.00				
34.00 34.50	8.57 8.57	5.44 5.44	0.00				
54.50	0.07	5.44	0.00				

Summary for Subcatchment S-3: Subcat S-3

Runoff = 14.88 cfs @ 21.92 hrs, Volume= 7.253 af, Depth> 5.67" Routed to nonexistent node 2L

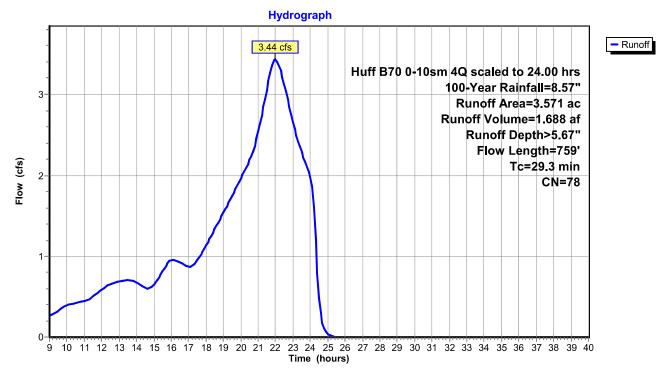
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 9.00-40.00 hrs, dt= 0.10 hrs Huff B70 0-10sm 4Q scaled to 24.00 hrs 100-Year Rainfall=8.57"

_	Area	(ac) (N Des	cription							
	10.	896	75 Row	/ crops, SF	R + CR, Goo	od, HSG B					
	od, HSG C										
_	4.215 85 Row crops, SR + CR, Good, HSG D										
	15.357 78 Weighted Average										
	15.357 100.00% Pervious Area										
	Тс	Length	Slope	Velocity	Capacity	Description					
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	6.3	100	0.0723	0.26		Sheet Flow,					
						Cultivated: Residue>20%					
	18.7	953	0.0089	0.85		Shallow Concentrated Flow,					
						Cultivated Straight Rows Kv= 9.0 fps					
_	25.0	1,053	Total								

Subcatchment S-3: Subcat S-3

Hydrograph for Subcatchment S-3: Subcat S-3

		_		ı		_	
Time	Precip.	Excess	Runoff	Time	Precip.	Excess	Runoff
(hours)	(inches)	(inches)	(cfs)	(hours)	(inches)	(inches)	<u>(cfs)</u>
9.00 9.50	1.61	0.28 0.33	1.16	35.00	8.57	5.92	0.00
9.50	1.71 1.82	0.33	1.44 1.71	35.50 36.00	8.57 8.57	5.92 5.92	0.00 0.00
10.00	1.93	0.39	1.82	36.50	8.57	5.92	0.00
11.00	2.04	0.43	1.02	37.00	8.57	5.92	0.00
11.50	2.17	0.58	2.19	37.50	8.57	5.92	0.00
12.00	2.31	0.67	2.57	38.00	8.57	5.92	0.00
12.50	2.46	0.76	2.86	38.50	8.57	5.92	0.00
13.00	2.61	0.86	2.97	39.00	8.57	5.92	0.00
13.50	2.75	0.95	3.04	39.50	8.57	5.92	0.00
14.00	2.88	1.05	2.85	40.00	8.57	5.92	0.00
14.50	3.00	1.13	2.58				
15.00	3.13	1.22	2.85				
15.50	3.29	1.34	3.58				
16.00	3.47	1.48	4.13				
16.50	3.64	1.60	3.95				
17.00	3.79	1.72	3.69				
17.50	3.97	1.86	4.17				
18.00	4.17	2.03	4.98				
18.50	4.41	2.22	5.84				
19.00 19.50	4.68 4.98	2.44	6.72				
20.00	4.90 5.31	2.69 2.98	7.64 8.57				
20.00	5.67	2.90 3.29	8.57 9.53				
20.00	6.09	3.66	11.20				
21.50	6.60	4.11	13.45				
22.00	7.12	4.59	14.82				
22.50	7.58	5.00	13.21				
23.00	7.96	5.35	11.16				
23.50	8.29	5.66	9.65				
24.00	8.57	5.92	8.34				
24.50	8.57	5.92	1.26				
25.00	8.57	5.92	0.06				
25.50	8.57	5.92	0.00				
26.00	8.57	5.92	0.00				
26.50	8.57	5.92	0.00				
27.00	8.57	5.92	0.00				
27.50	8.57	5.92	0.00				
28.00	8.57	5.92	0.00				
28.50	8.57	5.92	0.00				
29.00	8.57 8.57	5.92 5.92	0.00 0.00				
29.50 30.00	8.57 8.57	5.92 5.92	0.00				
30.50	8.57	5.92	0.00				
30.50	8.57	5.92	0.00				
31.50	8.57	5.92	0.00				
32.00	8.57	5.92	0.00				
32.50	8.57	5.92	0.00				
33.00	8.57	5.92	0.00				
33.50	8.57	5.92	0.00				
34.00	8.57	5.92	0.00				
34.50	8.57	5.92	0.00				


Summary for Subcatchment S-4: Subcat S-4

Runoff = 3.44 cfs @ 21.99 hrs, Volume= 1.688 af, Depth> 5.67" Routed to nonexistent node 2L

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 9.00-40.00 hrs, dt= 0.10 hrs Huff B70 0-10sm 4Q scaled to 24.00 hrs 100-Year Rainfall=8.57"

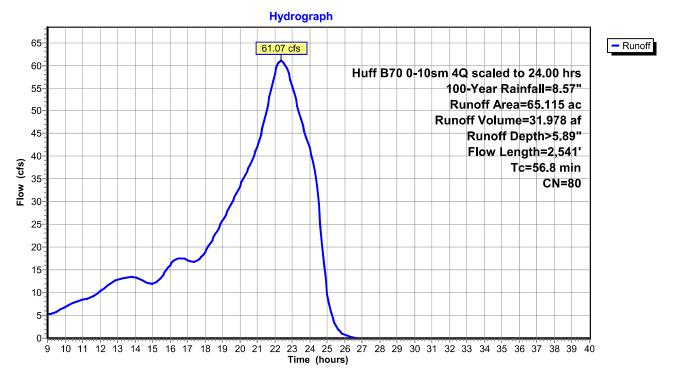
Area	(ac) C	N Dese	cription								
2.	499 7	'5 Row	crops, SR	+ CR, Goo	od, HSG B						
1.	073 8	85 Row	crops, SR	+ CR, God	od, HSG D						
3.	3.571 78 Weighted Average										
3.	3.571 100.00% Pervious Area										
Тс	Length	Slope	Velocity	Capacity	Description						
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)							
13.6	100	0.0107	0.12		Sheet Flow,						
					Cultivated: Residue>20% n= 0.170 P2= 3.34"						
11.6	447	0.0051	0.64		Shallow Concentrated Flow,						
					Cultivated Straight Rows Kv= 9.0 fps						
4.1	212	0.0092	0.86		Shallow Concentrated Flow,						
					Cultivated Straight Rows Kv= 9.0 fps						
29.3	759	Total									

Subcatchment S-4: Subcat S-4

Prepared by TRC Companies HydroCAD® 10.20-3c s/n 01402 © 2023 HydroCAD Software Solutions LLC

Hydrograph for Subcatchment S-4: Subcat S-4

T:	Dresia	Evenes	Duraff	Time -	Dresin	Evenes	Duraff
Time (hours)	Precip. (inches)	Excess (inches)	Runoff (cfs)	Time (hours)	Precip. (inches)	Excess (inches)	Runoff (cfs)
<u>(110013)</u> 9.00	1.61	0.28	0.26	35.00	<u>(incries)</u> 8.57	<u>(inches)</u> 5.92	0.00
9.50	1.71	0.33	0.33	35.50	8.57	5.92	0.00
10.00	1.82	0.39	0.39	36.00	8.57	5.92	0.00
10.50	1.93	0.45	0.42	36.50	8.57	5.92	0.00
11.00	2.04	0.51	0.44	37.00	8.57	5.92	0.00
11.50	2.17	0.58	0.50	37.50	8.57	5.92	0.00
12.00	2.31	0.67	0.59	38.00	8.57	5.92	0.00
12.50 13.00	2.46 2.61	0.76 0.86	0.66	38.50 39.00	8.57 8.57	5.92 5.92	0.00 0.00
13.50	2.01	0.86	0.69 0.71	39.00	8.57	5.92 5.92	0.00
14.00	2.88	1.05	0.67	40.00	8.57	5.92	0.00
14.50	3.00	1.13	0.61		0107	0.01	0100
15.00	3.13	1.22	0.65				
15.50	3.29	1.34	0.81				
16.00	3.47	1.48	0.95				
16.50	3.64	1.60	0.93				
17.00	3.79	1.72	0.86				
17.50 18.00	3.97 4.17	1.86 2.03	0.95 1.13				
18.50	4.17	2.03	1.33				
19.00	4.68	2.44	1.54				
19.50	4.98	2.69	1.75				
20.00	5.31	2.98	1.96				
20.50	5.67	3.29	2.19				
21.00	6.09	3.66	2.54				
21.50	6.60	4.11	3.06				
22.00 22.50	7.12 7.58	4.59 5.00	3.44 3.13				
22.50	7.96	5.35	2.66				
23.50	8.29	5.66	2.29				
24.00	8.57	5.92	1.98				
24.50	8.57	5.92	0.48				
25.00	8.57	5.92	0.04				
25.50	8.57	5.92	0.00				
26.00	8.57	5.92	0.00				
26.50 27.00	8.57 8.57	5.92 5.92	0.00 0.00				
27.50	8.57	5.92	0.00				
28.00	8.57	5.92	0.00				
28.50	8.57	5.92	0.00				
29.00	8.57	5.92	0.00				
29.50	8.57	5.92	0.00				
30.00	8.57	5.92	0.00				
30.50 31.00	8.57 8.57	5.92 5.92	0.00 0.00				
31.00	8.57	5.92	0.00				
32.00	8.57	5.92	0.00				
32.50	8.57	5.92	0.00				
33.00	8.57	5.92	0.00				
33.50	8.57	5.92	0.00				
34.00	8.57	5.92	0.00				
34.50	8.57	5.92	0.00				
				I			


Summary for Subcatchment S-5: Subcat S-5

Runoff = 61.07 cfs @ 22.38 hrs, Volume= 31.978 af, Depth> 5.89" Routed to nonexistent node 2L

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 9.00-40.00 hrs, dt= 0.10 hrs Huff B70 0-10sm 4Q scaled to 24.00 hrs 100-Year Rainfall=8.57"

Area	(ac) (CN Des	cription							
22.	946	75 Row	/ crops, SF	R + CR, Goo	od, HSG B					
4.	.335			R + CR, Goo						
32.826 85 Row crops, SR + CR, Good, HSG D										
4.661 73 Woods, Fair, HSG C										
0.	0.347 79 Woods, Fair, HSG D									
65.	65.115 80 Weighted Average									
65.	65.115 100.00% Pervious Area									
		_		_						
Tc	Length		Velocity	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
9.9	100	0.0238	0.17		Sheet Flow,					
					Cultivated: Residue>20%					
5.5	380	0.0165	1.16		Shallow Concentrated Flow,					
					Cultivated Straight Rows Kv= 9.0 fps					
41.4	2,061	0.0085	0.83		Shallow Concentrated Flow,					
					Cultivated Straight Rows Kv= 9.0 fps					
56.8	2,541	Total								

Subcatchment S-5: Subcat S-5

Hydrograph for Subcatchment S-5: Subcat S-5

	_	_	_	1	_	_	
Time	Precip.	Excess	Runoff	Time	Precip.	Excess	Runoff
(hours)	(inches)	(inches)	(cfs)	(hours)	(inches)	(inches)	(cfs)
9.00	1.61	0.34	5.28	35.00	8.57	6.16	0.00
9.50	1.71	0.39	5.78	35.50	8.57	6.16	0.00
10.00	1.82	0.46	6.88	36.00	8.57	6.16	0.00
10.50	1.93	0.52	7.83	36.50	8.57	6.16	0.00
11.00	2.04	0.59	8.38	37.00	8.57	6.16	0.00
11.50	2.17	0.67	9.01	37.50	8.57	6.16	0.00
12.00	2.31	0.76	10.23	38.00	8.57	6.16	0.00
12.50	2.46	0.86	11.73	38.50	8.57	6.16	0.00
13.00 13.50	2.61 2.75	0.96 1.07	12.79	39.00 39.50	8.57 8.57	6.16 6.16	0.00 0.00
14.00	2.75	1.16	13.37 13.38	40.00	8.57	6.16	0.00
14.00	3.00	1.25	12.60	40.00	0.57	0.10	0.00
14.00	3.13	1.35	11.95				
15.50	3.29	1.47	13.37				
16.00	3.47	1.62	16.09				
16.50	3.64	1.75	17.58				
17.00	3.79	1.87	17.15				
17.50	3.97	2.01	16.93				
18.00	4.17	2.19	18.94				
18.50	4.41	2.39	22.13				
19.00	4.68	2.62	25.73				
19.50	4.98	2.87	29.52				
20.00	5.31	3.16	33.42				
20.50	5.67	3.49	37.41				
21.00	6.09	3.87	42.08				
21.50	6.60	4.32	49.46				
22.00	7.12	4.81	58.15				
22.50	7.58	5.23	60.78				
23.00	7.96	5.59	55.52				
23.50	8.29	5.90	48.13				
24.00	8.57	6.16	41.72				
24.50	8.57	6.16	29.46				
25.00	8.57 8.57	6.16 6.16	9.72 2.62				
25.50 26.00	8.57	6.16 6.16	2.62				
26.50	8.57	6.16	0.08				
27.00	8.57	6.16	0.01				
27.50	8.57	6.16	0.00				
28.00	8.57	6.16	0.00				
28.50	8.57	6.16	0.00				
29.00	8.57	6.16	0.00				
29.50	8.57	6.16	0.00				
30.00	8.57	6.16	0.00				
30.50	8.57	6.16	0.00				
31.00	8.57	6.16	0.00				
31.50	8.57	6.16	0.00				
32.00	8.57	6.16	0.00				
32.50	8.57	6.16	0.00				
33.00	8.57	6.16	0.00				
33.50	8.57	6.16	0.00				
34.00	8.57	6.16 6.16	0.00				
34.50	8.57	6.16	0.00				
				I			

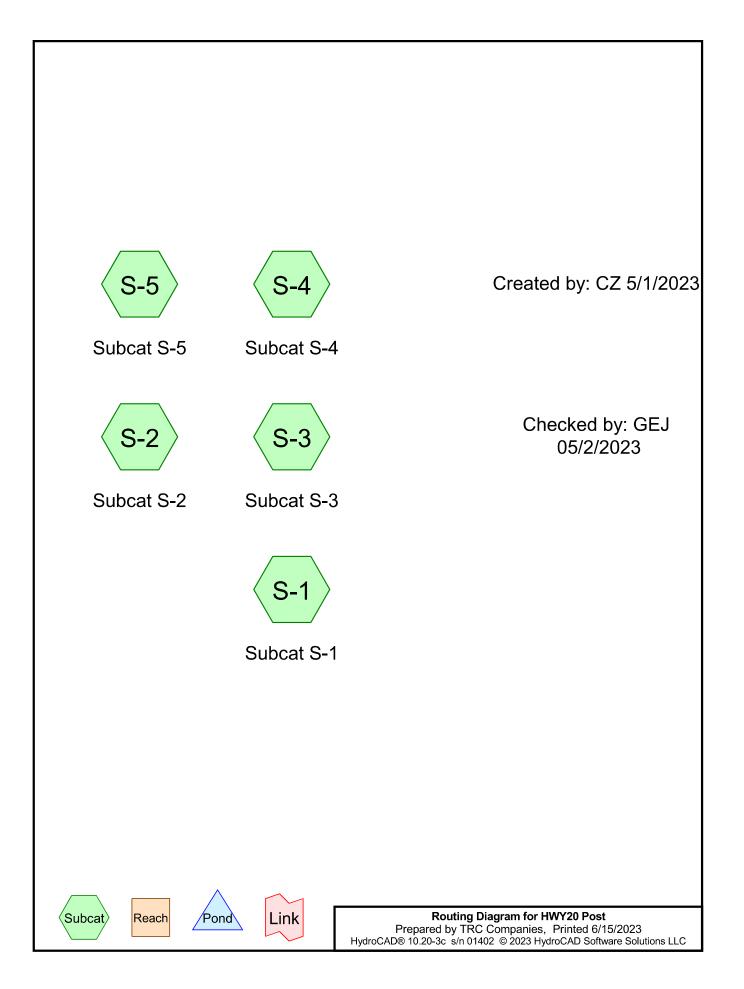
TABLE OF CONTENTS

Project Reports

- 1 Routing Diagram
- 2 Rainfall Events Listing (selected events)
- 3 Area Listing (all nodes)
- 4 Soil Listing (all nodes)
- 5 Ground Covers (all nodes)

2-Year Event

- 6 Node Listing
- 7 Subcat S-1: Subcat S-1
- 9 Subcat S-2: Subcat S-2
- 12 Subcat S-3: Subcat S-3
- 14 Subcat S-4: Subcat S-4
- 16 Subcat S-5: Subcat S-5


<u>10-Year Event</u>

- 18 Node Listing
- 19 Subcat S-1: Subcat S-1
- 21 Subcat S-2: Subcat S-2
- 24 Subcat S-3: Subcat S-3
- 26 Subcat S-4: Subcat S-4
- 28 Subcat S-5: Subcat S-5

100-Year Event

- 30 Node Listing
- 31 Subcat S-1: Subcat S-1
- 33 Subcat S-2: Subcat S-2
- 36 Subcat S-3: Subcat S-3
- 38 Subcat S-4: Subcat S-4
- 40 Subcat S-5: Subcat S-5

Attachment 3 Post-Development HydroCAD Calculations

				-	-		-	
Event#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)	AMC
1	2-Year	Huff B70 0-10sm	4Q	Scale	24.00	1	3.34	2
2	10-Year	Huff B70 0-10sm	4Q	Scale	24.00	1	5.15	2
3	100-Year	Huff B70 0-10sm	4Q	Scale	24.00	1	8.57	2

Rainfall Events Listing (selected events)

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
4.171	61	>75% Grass cover, Good, HSG B (S-1, S-2)
2.099	80	>75% Grass cover, Good, HSG D (S-2)
0.608	85	Gravel roads, HSG B (S-1, S-2, S-3, S-5)
0.180	91	Gravel roads, HSG D (S-1, S-2, S-3, S-5)
16.707	58	Meadow, non-grazed, HSG B (S-1, S-2, S-3, S-4, S-5)
10.174	78	Meadow, non-grazed, HSG D (S-1, S-3, S-4, S-5)
0.346	98	Roofs, HSG B (S-2)
30.564	75	Row crops, SR + CR, Good, HSG B (S-1, S-2, S-3, S-4, S-5)
6.434	82	Row crops, SR + CR, Good, HSG C (S-1, S-2, S-3, S-5)
32.402	85	Row crops, SR + CR, Good, HSG D (S-1, S-2, S-3, S-4, S-5)
4.661	73	Woods, Fair, HSG C (S-5)
0.347	79	Woods, Fair, HSG D (S-5)
108.695	76	TOTAL AREA

Soil Listing (all nodes)

Area	Soil	Subcatchment		
(acres)	Group	Numbers		
0.000	HSG A			
52.398	HSG B	S-1, S-2, S-3, S-4, S-5		
11.095	HSG C	S-1, S-2, S-3, S-5		
45.203	HSG D	S-1, S-2, S-3, S-4, S-5		
0.000	Other			
108.695		TOTAL AREA		

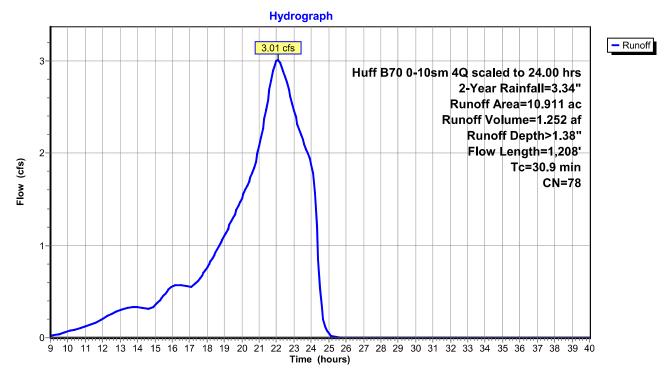
HWY20	Post
--------------	------

				-	-		
HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatchmer
(acres)	(acres)	(acres)	(acres)	(acres)	(acres)	Cover	Numbers
0.000	4.171	0.000	2.099	0.000	6.271	>75% Grass cover, Good	S-1,
							S-2
0.000	0.608	0.000	0.180	0.000	0.788	Gravel roads	S-1,
							S - 2,
							S-3,
							S-5
0.000	16.707	0.000	10.174	0.000	26.882	Meadow, non-grazed	S-1,
							S-2,
							S-3,
							S-4,
							S-5
0.000	0.346	0.000	0.000	0.000	0.346	Roofs	S-2
0.000	30.564	6.434	32.402	0.000	69.401	Row crops, SR + CR, Good	S-1,
							S-2,
							S-3,
							S - 4,
							S-5
0.000	0.000	4.661	0.347	0.000	5.008	Woods, Fair	S-5
0.000	52.398	11.095	45.203	0.000	108.695	TOTAL AREA	

Ground Covers (all nodes)

Time span=9.00-40.00 hrs, dt=0.10 hrs, 311 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment S-1: Subcat S-1	Runoff Area=10.911 ac 0.00% Impervious Runoff Depth>1.38" Flow Length=1,208' Tc=30.9 min CN=78 Runoff=3.01 cfs 1.252 af
Subcatchment S-2: Subcat S-2	Runoff Area=13.741 ac 2.52% Impervious Runoff Depth=1.13" Flow Length=740' Tc=16.2 min CN=74 Runoff=3.39 cfs 1.295 af
Subcatchment S-3: Subcat S-3	Runoff Area=15.357 ac 0.00% Impervious Runoff Depth=0.86" Flow Length=1,065' Tc=77.7 min CN=69 Runoff=2.83 cfs 1.100 af
Subcatchment S-4: Subcat S-4	Runoff Area=3.571 ac 0.00% Impervious Runoff Depth=0.71" Flow Length=758' Tc=36.8 min CN=66 Runoff=0.61 cfs 0.213 af
Subcatchment S-5: Subcat S-5	Runoff Area=65.115 ac 0.00% Impervious Runoff Depth>1.38" Flow Length=2,540' Tc=65.7 min CN=78 Runoff=16.99 cfs 7.471 af
Total Runoff Area = 108.6	695 ac Runoff Volume = 11.330 af Average Runoff Depth = 1.25"


99.68% Pervious = 108.349 ac 0.32% Impervious = 0.346 ac

Summary for Subcatchment S-1: Subcat S-1

Runoff = 3.01 cfs @ 22.06 hrs, Volume= 1.252 af, Depth> 1.38" Routed to nonexistent node 2L

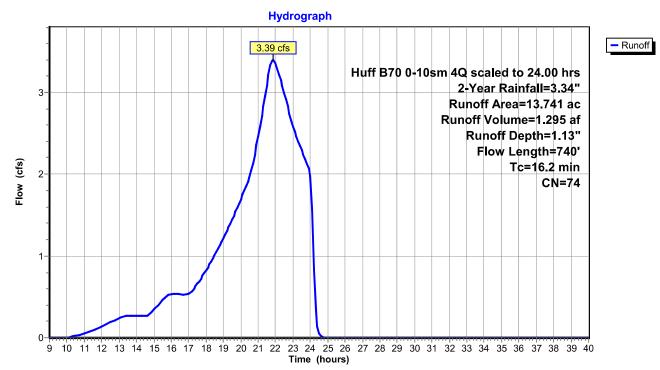
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 9.00-40.00 hrs, dt= 0.10 hrs Huff B70 0-10sm 4Q scaled to 24.00 hrs 2-Year Rainfall=3.34"

Area	(ac) C	N Dese	cription		
0.	026 6	61 >75 ⁹	% Grass co	over, Good	, HSG B
0.	078 8	85 Grav	/el roads, l	HSG B	
0.	038 9	1 Grav	/el roads, l	HSG D	
0.	123 5	68 Mea	dow, non-g	grazed, HS	G B
0.	037 7	'8 Mea	dow, non-g	grazed, HS	G D
6.	347 7	'5 Row	crops, SR	+ CR, Goo	od, HSG B
1.	730 8	82 Row	crops, SR	t + CR, Goo	od, HSG C
2.	531 8	5 Row	crops, SR	t + CR, Goo	pd, HSG D
10.	911 7	'8 Weig	ghted Aver	age	
10.	911		00% Pervi		
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
10.2	100	0.0217	0.16		Sheet Flow,
					Cultivated: Residue>20% n= 0.170 P2= 3.40"
2.5	186	0.0189	1.24		Shallow Concentrated Flow,
					Cultivated Straight Rows Kv= 9.0 fps
0.7	63	0.0304	1.57		Shallow Concentrated Flow,
					Cultivated Straight Rows Kv= 9.0 fps
12.5	598	0.0078	0.79		Shallow Concentrated Flow,
					Cultivated Straight Rows Kv= 9.0 fps
0.1	12	0.0117	1.74		Shallow Concentrated Flow,
					Unpaved Kv= 16.1 fps
4.9	249	0.0088	0.84		Shallow Concentrated Flow,
					Cultivated Straight Rows Kv= 9.0 fps
30.9	1,208	Total			

Subcatchment S-1: Subcat S-1

Prepared by TRC Companies HydroCAD® 10.20-3c s/n 01402 © 2023 HydroCAD Software Solutions LLC

Hydrograph for Subcatchment S-1: Subcat S-1


TimePrecip.ExcessRunoffTimePrecip.ExcessI(hours)(inches)(inches)(cfs)(hours)(inches)(inches)9.000.630.000.0235.003.341.38	Runoff (cfs) 0.00
9.00 0.03 0.00 0.02 33.00 3.34 1.30	0.00
9.50 0.67 0.00 0.04 35.50 3.34 1.38	0.00
10.00 0.71 0.01 0.07 36.00 3.34 1.38	0.00
10.50 0.75 0.01 0.09 36.50 3.34 1.38	0.00
11.00 0.80 0.02 0.12 37.00 3.34 1.38	0.00
11.50 0.85 0.03 0.16 37.50 3.34 1.38	0.00
12.00 0.90 0.04 0.21 38.00 3.34 1.38	0.00
12.50 0.96 0.05 0.26 38.50 3.34 1.38	0.00
13.00 1.02 0.06 0.30 39.00 3.34 1.38	0.00
13.50 1.07 0.08 0.33 39.50 3.34 1.38	0.00
14.00 1.12 0.09 0.33 40.00 3.34 1.38	0.00
14.50 1.17 0.11 0.32	
15.00 1.22 0.12 0.35	
15.50 1.28 0.15 0.45 16.00 1.35 0.17 0.56	
16.50 1.42 0.20 0.57	
17.00 1.48 0.22 0.55	
17.50 1.55 0.25 0.62	
18.00 1.63 0.29 0.76	
18.50 1.72 0.34 0.93	
19.00 1.82 0.39 1.11	
19.50 1.94 0.45 1.30	
20.00 2.07 0.52 1.51	
20.50 2.21 0.61 1.74	
21.00 2.38 0.71 2.08 21.50 2.57 0.83 2.58	
22.00 2.78 0.97 3.01	
22.50 2.95 1.10 2.83	
23.00 3.10 1.20 2.46	
23.50 3.23 1.30 2.15	
24.00 3.34 1.38 1.88	
24.50 3.34 1.38 0.53	
25.00 3.34 1.38 0.05	
25.50 3.34 1.38 0.00	
26.00 3.34 1.38 0.00	
26.50 3.34 1.38 0.00 27.00 3.34 1.38 0.00	
27.50 3.34 1.38 0.00	
28.00 3.34 1.38 0.00	
28.50 3.34 1.38 0.00	
29.00 3.34 1.38 0.00	
29.50 3.34 1.38 0.00	
30.00 3.34 1.38 0.00	
30.50 3.34 1.38 0.00	
31.00 3.34 1.38 0.00	
31.50 3.34 1.38 0.00 32.00 3.34 1.38 0.00	
32.50 3.34 1.38 0.00	
33.00 3.34 1.38 0.00	
33.50 3.34 1.38 0.00	
34.00 3.34 1.38 0.00	
34.50 3.34 1.38 0.00	

Summary for Subcatchment S-2: Subcat S-2

Runoff = 3.39 cfs @ 21.84 hrs, Volume= 1.295 af, Depth= 1.13" Routed to nonexistent node 2L

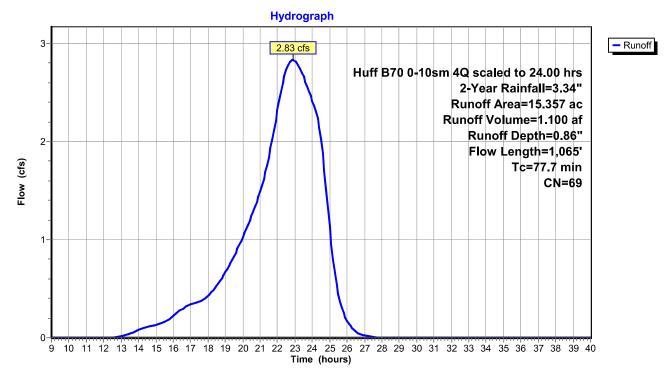
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 9.00-40.00 hrs, dt= 0.10 hrs Huff B70 0-10sm 4Q scaled to 24.00 hrs 2-Year Rainfall=3.34"

_	Area	(ac)	CN	Desc	cription				
	4.145 61 >75% Grass cover, Good, HSG B								
	2.099 80 >75% Grass cover, Good, HSG D								
	0.286 85 Gravel roads, HSG B								
	0.	007	91	Grav	el roads, l	HSG D			
	0.	239	58	Mea	dow, non-g	grazed, HS	G B		
	0.	346	98	Roof	s, HSG B				
	4.	465	75	Row	crops, SR	t + CR, Goo	od, HSG B		
	0.	124	82	Row	crops, SR	t + CR, Goo	od, HSG C		
	2.030 85 Row crops, SR + CR, Good, HSG D								
	13.741 74 Weighted Average								
	13.	395		97.4	8% Pervio	us Area			
	0.	346		2.52	% Impervi	ous Area			
	Тс	Lengt	h	Slope	Velocity	Capacity	Description		
_	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)			
	7.6	10	0 0	0.0446	0.22		Sheet Flow,		
							Cultivated: Residue>20% n= 0.170 P2= 3.40"		
	8.6	64	0 0	0.0188	1.23		Shallow Concentrated Flow,		
_							Cultivated Straight Rows Kv= 9.0 fps		
	16.2	74	0 1	Total					

Subcatchment S-2: Subcat S-2

Hydrograph for Subcatchment S-2: Subcat S-2

Time	Precip.	Excess	Runoff	Time	Precip.	Excess	Runoff
(hours)	(inches)	(inches)	(cfs)	(hours)	(inches)	(inches)	(cfs)
9.00	0.63	0.00	0.00	35.00	3.34	1.13	0.00
9.50	0.67	0.00	0.00	35.50	3.34	1.13	0.00
10.00	0.71	0.00	0.00	36.00	3.34	1.13	0.00
10.50	0.75	0.00	0.02	36.50	3.34	1.13	0.00
11.00	0.80	0.00	0.05	37.00	3.34	1.13	0.00
11.50	0.85	0.01	0.09	37.50	3.34	1.13	0.00
12.00	0.90	0.01	0.14	38.00	3.34	1.13	0.00
12.50	0.96	0.02	0.19	38.50	3.34	1.13	0.00
13.00 13.50	1.02 1.07	0.03 0.04	0.23 0.27	39.00 39.50	3.34 3.34	1.13 1.13	0.00 0.00
14.00	1.12	0.04	0.27	40.00	3.34	1.13	0.00
14.00	1.12	0.04	0.27	40.00	5.54	1.15	0.00
15.00	1.22	0.03	0.20				
15.50	1.28	0.08	0.46				
16.00	1.35	0.10	0.54				
16.50	1.42	0.12	0.53				
17.00	1.48	0.14	0.53				
17.50	1.55	0.16	0.66				
18.00	1.63	0.19	0.82				
18.50	1.72	0.23	1.01				
19.00	1.82	0.27	1.21				
19.50	1.94	0.32	1.44				
20.00	2.07	0.38	1.69				
20.50	2.21	0.45	1.96				
21.00	2.38	0.54	2.47				
21.50	2.57	0.65	3.08				
22.00	2.78	0.77	3.34				
22.50 23.00	2.95 3.10	0.88 0.97	2.99 2.58				
23.00	3.10	1.06	2.38				
23.00	3.34	1.13	1.98				
24.50	3.34	1.13	0.05				
25.00	3.34	1.13	0.00				
25.50	3.34	1.13	0.00				
26.00	3.34	1.13	0.00				
26.50	3.34	1.13	0.00				
27.00	3.34	1.13	0.00				
27.50	3.34	1.13	0.00				
28.00	3.34	1.13	0.00				
28.50	3.34	1.13	0.00				
29.00	3.34	1.13	0.00				
29.50	3.34	1.13	0.00				
30.00 30.50	3.34 3.34	1.13 1.13	0.00 0.00				
31.00	3.34	1.13	0.00				
31.50	3.34	1.13	0.00				
32.00	3.34	1.13	0.00				
32.50	3.34	1.13	0.00				
33.00	3.34	1.13	0.00				
33.50	3.34	1.13	0.00				
34.00	3.34	1.13	0.00				
34.50	3.34	1.13	0.00				


Summary for Subcatchment S-3: Subcat S-3

Runoff = 2.83 cfs @ 22.87 hrs, Volume= Routed to nonexistent node 2L 1.100 af, Depth= 0.86"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 9.00-40.00 hrs, dt= 0.10 hrs Huff B70 0-10sm 4Q scaled to 24.00 hrs 2-Year Rainfall=3.34"

	Area	(ac) C	N Des	cription						
	0.	226 8	35 Grav	vel roads, l	HSG B					
	0.	078 9	91 Grav	Gravel roads, HSG D						
	6.	333 !	58 Mea	Meadow, non-grazed, HSG B						
	3.	808 7		Meadow, non-grazed, HSG D						
					t + CR, Goo	•				
					t + CR, Goo	•				
_					<u> + CR, Goo</u>	od, HSG D				
				ghted Aver	•					
	15.	357	100.	00% Pervi	ous Area					
	Tc	Length	Slope	Velocity		Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	6.3	100	0.0723	0.27		Sheet Flow,				
						Cultivated: Residue>20% n= 0.170 P2= 3.40"				
	1.6	174	0.0430	1.87		Shallow Concentrated Flow,				
						Cultivated Straight Rows Kv= 9.0 fps				
	30.1	179	0.0002	0.10		Shallow Concentrated Flow,				
		10	0.0400	0.40		Short Grass Pasture Kv= 7.0 fps				
	0.1	12	0.0180	2.16		Shallow Concentrated Flow,				
	00.0	000	0.0040	0.05		Unpaved Kv= 16.1 fps				
	39.6	600	0.0013	0.25		Shallow Concentrated Flow,				
_						Short Grass Pasture Kv= 7.0 fps				
	77 7	1 065	Total							

77.7 1,065 Total

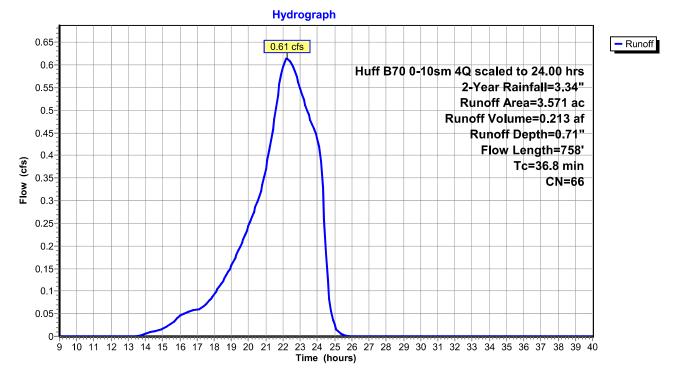
Subcatchment S-3: Subcat S-3

Hydrograph for Subcatchment S-3: Subcat S-3

Time	Precip.	Excess	Runoff	Time	Precip.	Excess	Runoff
(hours)	(inches)	(inches)	(cfs)	(hours)	(inches)	(inches)	(cfs)
9.00	0.63	0.00	0.00	35.00	3.34	0.86	0.00
9.50	0.67	0.00	0.00	35.50	3.34	0.86	0.00
10.00	0.71	0.00	0.00	36.00	3.34	0.86	0.00
10.50	0.75	0.00	0.00	36.50	3.34	0.86	0.00
11.00	0.80	0.00	0.00	37.00	3.34	0.86	0.00
11.50	0.85	0.00	0.00	37.50	3.34	0.86	0.00
12.00	0.90	0.00	0.00	38.00	3.34	0.86	0.00
12.50	0.96	0.00	0.00	38.50	3.34	0.86	0.00
13.00	1.02	0.00	0.01	39.00	3.34	0.86	0.00
13.50	1.07	0.01	0.04	39.50	3.34	0.86	0.00
14.00	1.12	0.01	0.08	40.00	3.34	0.86	0.00
14.50	1.17	0.02	0.11				
15.00	1.22	0.02	0.13				
15.50	1.28	0.03	0.16				
16.00	1.35	0.04	0.22				
16.50	1.42	0.05	0.29				
17.00	1.48	0.07	0.34				
17.50	1.55	0.08	0.37				
18.00	1.63	0.10	0.43				
18.50	1.72	0.13	0.53				
19.00	1.82	0.16	0.67				
19.50	1.94	0.20	0.83				
20.00	2.07	0.24	1.02				
20.50	2.21	0.30	1.24				
21.00	2.38	0.37	1.49				
21.50	2.57	0.45	1.84				
22.00	2.78	0.55	2.32				
22.50	2.95	0.65	2.73				
23.00	3.10	0.73	2.82				
23.50	3.23	0.80	2.66				
24.00	3.34	0.86	2.41				
24.50	3.34	0.86	2.02				
25.00 25.50	3.34	0.86	1.13				
25.50	3.34 3.34	0.86 0.86	0.44 0.17				
26.50	3.34	0.86	0.06				
20.00	3.34	0.86	0.00				
27.50	3.34	0.86	0.02				
28.00	3.34	0.86	0.00				
28.50	3.34	0.86	0.00				
29.00	3.34	0.86	0.00				
29.50	3.34	0.86	0.00				
30.00	3.34	0.86	0.00				
30.50	3.34	0.86	0.00				
31.00	3.34	0.86	0.00				
31.50	3.34	0.86	0.00				
32.00	3.34	0.86	0.00				
32.50	3.34	0.86	0.00				
33.00	3.34	0.86	0.00				
33.50	3.34	0.86	0.00				
34.00	3.34	0.86	0.00				
34.50	3.34	0.86	0.00				

Summary for Subcatchment S-4: Subcat S-4

Runoff = 0.61 cfs @ 22.25 hrs, Volume= 0 Routed to nonexistent node 2L


0.213 af, Depth= 0.71"

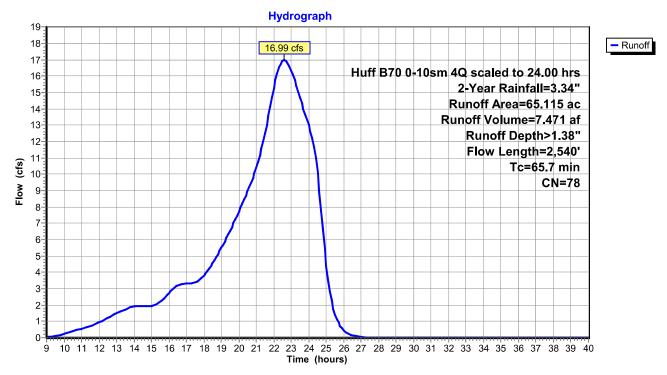
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 9.00-40.00 hrs, dt= 0.10 hrs Huff B70 0-10sm 4Q scaled to 24.00 hrs 2-Year Rainfall=3.34"

_	Area	(ac) C	N Dese	Description							
	2.	251 :	58 Mea	dow, non-g	grazed, HS	GB					
	0.624 78 Meadow, non-grazed, HSG D										
0.248 75 Row crops, SR + CR, Good, HSG B											
	0.448 85 Row crops, SR + CR, Good, HSG D										
	3.571 66 Weighted Average										
	3.571 100.00% Pervious Area										
	Тс	Length	Slope	Velocity	Capacity	Description					
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	17.8	100	0.0107	0.09		Sheet Flow,					
						Grass: Dense n= 0.240 P2= 3.40"					
	15.2	456	0.0051	0.50		Shallow Concentrated Flow,					
						Short Grass Pasture Kv= 7.0 fps					
	3.8	202	0.0096	0.88		Shallow Concentrated Flow,					
_						Cultivated Straight Rows Kv= 9.0 fps					

36.8 758 Total

Subcatchment S-4: Subcat S-4

Hydrograph for Subcatchment S-4: Subcat S-4


Time	Precip.	Excess	Runoff	Time	Precip.	Excess	Runoff
(hours)	(inches)	(inches)	(cfs)	(hours)	(inches)	(inches)	(cfs)
<u>(110013)</u> 9.00	0.63	0.00	0.00	35.00	3.34	0.71	0.00
9.50	0.67	0.00	0.00	35.50	3.34	0.71	0.00
10.00	0.71	0.00	0.00	36.00	3.34	0.71	0.00
10.50	0.75	0.00	0.00	36.50	3.34	0.71	0.00
11.00	0.80	0.00	0.00	37.00	3.34	0.71	0.00
11.50	0.85	0.00	0.00	37.50	3.34	0.71	0.00
12.00	0.90	0.00	0.00	38.00	3.34	0.71	0.00
12.50 13.00	0.96 1.02	0.00 0.00	0.00 0.00	38.50 39.00	3.34 3.34	0.71 0.71	0.00 0.00
13.50	1.02	0.00	0.00	39.00	3.34	0.71	0.00
14.00	1.12	0.00	0.01	40.00	3.34	0.71	0.00
14.50	1.17	0.00	0.01				
15.00	1.22	0.01	0.02				
15.50	1.28	0.01	0.03				
16.00	1.35	0.02	0.04				
16.50	1.42	0.03	0.05				
17.00 17.50	1.48 1.55	0.04 0.05	0.06 0.07				
18.00	1.63	0.06	0.07				
18.50	1.72	0.08	0.12				
19.00	1.82	0.11	0.16				
19.50	1.94	0.14	0.20				
20.00	2.07	0.17	0.24				
20.50	2.21	0.22	0.30				
21.00 21.50	2.38 2.57	0.28 0.35	0.37 0.48				
21.50	2.57	0.35	0.48 0.60				
22.50	2.95	0.52	0.60				
23.00	3.10	0.59	0.55				
23.50	3.23	0.66	0.49				
24.00	3.34	0.71	0.44				
24.50	3.34	0.71	0.18				
25.00	3.34 3.34	0.71	0.02				
25.50 26.00	3.34	0.71 0.71	0.00 0.00				
26.50	3.34	0.71	0.00				
27.00	3.34	0.71	0.00				
27.50	3.34	0.71	0.00				
28.00	3.34	0.71	0.00				
28.50	3.34	0.71	0.00				
29.00	3.34	0.71	0.00				
29.50 30.00	3.34 3.34	0.71 0.71	0.00 0.00				
30.50	3.34	0.71	0.00				
31.00	3.34	0.71	0.00				
31.50	3.34	0.71	0.00				
32.00	3.34	0.71	0.00				
32.50	3.34	0.71	0.00				
33.00	3.34	0.71	0.00				
33.50 34.00	3.34 3.34	0.71 0.71	0.00 0.00				
34.00	3.34	0.71	0.00				
0 1.00	0.01	5.7 7	0.00				
			· · · · · · · · · · · · · · · · · · ·	•			

Summary for Subcatchment S-5: Subcat S-5

Runoff = 16.99 cfs @ 22.59 hrs, Volume= Routed to nonexistent node 2L 7.471 af, Depth> 1.38"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 9.00-40.00 hrs, dt= 0.10 hrs Huff B70 0-10sm 4Q scaled to 24.00 hrs 2-Year Rainfall=3.34"

	Area	(ac)	CN	Desc	cription		
	0.	018	85	Grav	el roads, l	HSG B	
	0.	057	91	Grav	el roads, l	HSG D	
	7.	761	58	Mea	dow, non-g	grazed, HS	G B
	5.	704	78	Mea	dow, non-g	grazed, HS	G D
	15.	167	75	Row	crops, SR	+ CR, Goo	od, HSG B
	4.	335	82	Row	crops, SR	t + CR, Goo	od, HSG C
	27.	064	85			t + CR, Goo	od, HSG D
		661	73		ds, Fair, ⊦		
	0.	347	79	Woo	ds, Fair, F	ISG D	
65.115 78 Weighted Average							
	65.115				00% Pervi	ous Area	
				_		_	
	Тс	Lengt		Slope	Velocity	Capacity	Description
	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)	
	12.9	10	0 0	.0238	0.13		Sheet Flow,
							Grass: Dense n= 0.240 P2= 3.40"
	21.5	1,06	60	0.0140	0.83		Shallow Concentrated Flow,
							Short Grass Pasture Kv= 7.0 fps
	31.3	1,37	,374 0.006	0066	0.73		Shallow Concentrated Flow,
							Cultivated Straight Rows Kv= 9.0 fps
	65.7	2,54	0 Т	otal			

Subcatchment S-5: Subcat S-5

Page 19

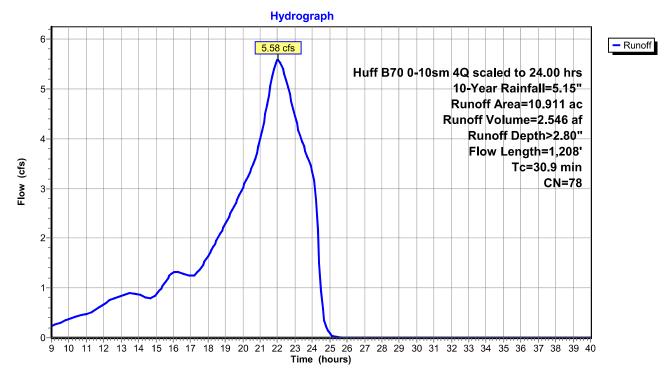
Prepared by TRC Companies HydroCAD® 10.20-3c s/n 01402 © 2023 HydroCAD Software Solutions LLC

Hydrograph for Subcatchment S-5: Subcat S-5

T !	Decale		D	Г	Ducielie	Evene	D
Time (hours)	Precip. (inches)	Excess (inches)	Runoff (cfs)	Time (hours)	Precip. (inches)	Excess (inches)	Runoff (cfs)
<u>(110013)</u> 9.00	0.63	0.00	0.04	35.00	<u>(incries)</u> 3.34	1.38	0.00
9.50	0.03	0.00	0.04	35.50	3.34	1.38	0.00
10.00	0.71	0.00	0.24	36.00	3.34	1.38	0.00
10.50	0.75	0.01	0.40	36.50	3.34	1.38	0.00
11.00	0.80	0.02	0.55	37.00	3.34	1.38	0.00
11.50	0.85	0.03	0.71	37.50	3.34	1.38	0.00
12.00	0.90	0.04	0.94	38.00	3.34	1.38	0.00
12.50	0.96	0.05	1.22	38.50	3.34	1.38	0.00
13.00	1.02	0.06	1.50	39.00	3.34	1.38	0.00
13.50	1.07	0.08	1.74	39.50	3.34	1.38	0.00
14.00	1.12	0.09	1.90	40.00	3.34	1.38	0.00
14.50	1.17	0.11	1.94				
15.00	1.22	0.12	1.93				
15.50	1.28 1.35	0.15	2.18 2.72				
16.00 16.50	1.35	0.17 0.20	3.18				
17.00	1.42	0.20	3.31				
17.50	1.55	0.25	3.37				
18.00	1.63	0.29	3.80				
18.50	1.72	0.34	4.56				
19.00	1.82	0.39	5.50				
19.50	1.94	0.45	6.55				
20.00	2.07	0.52	7.71				
20.50	2.21	0.61	8.96				
21.00	2.38	0.71	10.40				
21.50	2.57	0.83	12.53				
22.00	2.78	0.97	15.26				
22.50	2.95	1.10	16.95 16.27				
23.00 23.50	3.10 3.23	1.20 1.30	16.37 14.71				
23.30	3.23	1.30	13.01				
24.50	3.34	1.38	10.07				
25.00	3.34	1.38	4.41				
25.50	3.34	1.38	1.42				
26.00	3.34	1.38	0.45				
26.50	3.34	1.38	0.14				
27.00	3.34	1.38	0.03				
27.50	3.34	1.38	0.00				
28.00	3.34	1.38	0.00				
28.50	3.34	1.38	0.00				
29.00 29.50	3.34 3.34	1.38 1.38	0.00 0.00				
29.50	3.34	1.38	0.00				
30.50	3.34	1.38	0.00				
31.00	3.34	1.38	0.00				
31.50	3.34	1.38	0.00				
32.00	3.34	1.38	0.00				
32.50	3.34	1.38	0.00				
33.00	3.34	1.38	0.00				
33.50	3.34	1.38	0.00				
34.00	3.34	1.38	0.00				
34.50	3.34	1.38	0.00				
				l			

Time span=9.00-40.00 hrs, dt=0.10 hrs, 311 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment S-1: Subcat S-1	Runoff Area=10.911 ac 0.00% Impervious Runoff Depth>2.80" Flow Length=1,208' Tc=30.9 min CN=78 Runoff=5.58 cfs 2.546 af
Subcatchment S-2: Subcat S-2	Runoff Area=13.741 ac 2.52% Impervious Runoff Depth>2.47" Flow Length=740' Tc=16.2 min CN=74 Runoff=6.63 cfs 2.828 af
Subcatchment S-3: Subcat S-3	Runoff Area=15.357 ac 0.00% Impervious Runoff Depth>2.07" Flow Length=1,065' Tc=77.7 min CN=69 Runoff=5.96 cfs 2.645 af
Subcatchment S-4: Subcat S-4	Runoff Area=3.571 ac 0.00% Impervious Runoff Depth=1.83" Flow Length=758' Tc=36.8 min CN=66 Runoff=1.36 cfs 0.545 af
Subcatchment S-5: Subcat S-5	Runoff Area=65.115 ac 0.00% Impervious Runoff Depth>2.81" Flow Length=2,540' Tc=65.7 min CN=78 Runoff=31.48 cfs 15.248 af
Total Runoff Area = 108	.695 ac Runoff Volume = 23.811 af Average Runoff Depth = 2.63"


99.68% Pervious = 108.349 ac 0.32% Impervious = 0.346 ac

Summary for Subcatchment S-1: Subcat S-1

Runoff = 5.58 cfs @ 22.03 hrs, Volume= Routed to nonexistent node 2L 2.546 af, Depth> 2.80"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 9.00-40.00 hrs, dt= 0.10 hrs Huff B70 0-10sm 4Q scaled to 24.00 hrs 10-Year Rainfall=5.15"

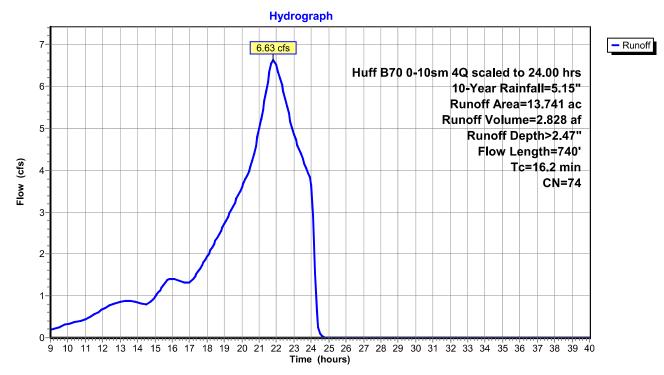
Area	Area (ac) CN Description								
0.	026 6	51 >759	>75% Grass cover, Good, HSG B						
0.	078 8	5 Grav	Gravel roads, HSG B						
0.	038 9	1 Grav	Gravel roads, HSG D						
0.	123 5	8 Mea	Meadow, non-grazed, HSG B						
0.	037 7	'8 Mea	Meadow, non-grazed, HSG D						
6.	347 7	'5 Row	Row crops, SR + CR, Good, HSG B						
1.	730 8	2 Row	crops, SR	+ CR, Goo	od, HSG C				
2.	<u>531 8</u>	5 Row	Row crops, SR + CR, Good, HSG D						
10.	911 7	'8 Weig	ghted Aver	age					
10.	911	100.	00% Pervi	ous Area					
Тс	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
10.2	100	0.0217	0.16		Sheet Flow,				
					Cultivated: Residue>20% n= 0.170 P2= 3.40"				
2.5	186	0.0189	1.24		Shallow Concentrated Flow,				
					Cultivated Straight Rows Kv= 9.0 fps				
0.7	63	0.0304	1.57		Shallow Concentrated Flow,				
					Cultivated Straight Rows Kv= 9.0 fps				
12.5	598	0.0078	0.79		Shallow Concentrated Flow,				
					Cultivated Straight Rows Kv= 9.0 fps				
0.1	12	0.0117	1.74		Shallow Concentrated Flow,				
					Unpaved Kv= 16.1 fps				
4.9	249	0.0088	0.84		Shallow Concentrated Flow,				
					Cultivated Straight Rows Kv= 9.0 fps				
30.9	1,208	Total							

Subcatchment S-1: Subcat S-1

Prepared by TRC Companies HydroCAD® 10.20-3c s/n 01402 © 2023 HydroCAD Software Solutions LLC

Hydrograph for Subcatchment S-1: Subcat S-1

	<u> </u>	_			_ .	_	
Time	Precip.	Excess	Runoff	Time	Precip.	Excess	Runoff
(hours)	(inches)	(inches)	(cfs)	(hours)	(inches)	(inches)	(cfs)
9.00 9.50	0.97 1.03	0.05 0.07	0.23 0.30	35.00 35.50	5.15 5.15	2.84 2.84	0.00 0.00
10.00	1.03	0.07	0.38	36.00	5.15	2.84	0.00
10.50	1.16	0.10	0.43	36.50	5.15	2.84	0.00
11.00	1.23	0.13	0.47	37.00	5.15	2.84	0.00
11.50	1.30	0.15	0.55	37.50	5.15	2.84	0.00
12.00	1.39	0.19	0.67	38.00	5.15	2.84	0.00
12.50	1.48	0.22	0.78	38.50	5.15	2.84	0.00
13.00	1.57	0.26	0.85	39.00	5.15	2.84	0.00
13.50	1.65	0.30	0.89	39.50	5.15	2.84	0.00
14.00	1.73	0.34	0.87	40.00	5.15	2.84	0.00
14.50	1.80	0.38	0.80				
15.00	1.88	0.42	0.86				
15.50	1.98	0.47	1.09				
16.00	2.09	0.53	1.31				
16.50	2.19	0.59	1.30				
17.00	2.28	0.65	1.23				
17.50	2.38	0.71	1.36				
18.00 18.50	2.51 2.65	0.79 0.89	1.64 1.96				
19.00	2.05	1.00	2.29				
19.50	2.99	1.12	2.23				
20.00	3.19	1.27	3.01				
20.50	3.41	1.43	3.40				
21.00	3.66	1.62	4.00				
21.50	3.96	1.86	4.87				
22.00	4.28	2.11	5.58				
22.50	4.55	2.34	5.17				
23.00	4.78	2.53	4.45				
23.50	4.98	2.70	3.85				
24.00	5.15	2.84	3.35				
24.50	5.15	2.84	0.94				
25.00	5.15	2.84	0.08				
25.50	5.15	2.84	0.00				
26.00	5.15	2.84	0.00				
26.50 27.00	5.15 5.15	2.84 2.84	0.00 0.00				
27.50	5.15	2.84	0.00				
28.00	5.15	2.84	0.00				
28.50	5.15	2.84	0.00				
29.00	5.15	2.84	0.00				
29.50	5.15	2.84	0.00				
30.00	5.15	2.84	0.00				
30.50	5.15	2.84	0.00				
31.00	5.15	2.84	0.00				
31.50	5.15	2.84	0.00				
32.00	5.15	2.84	0.00				
32.50	5.15	2.84	0.00				
33.00	5.15	2.84	0.00				
33.50 34.00	5.15 5.15	2.84 2.84	0.00 0.00				
34.00 34.50	5.15	2.84 2.84	0.00				
54.50	5.15	2.04	0.00				


Summary for Subcatchment S-2: Subcat S-2

Runoff = 6.63 cfs @ 21.82 hrs, Volume= Routed to nonexistent node 2L

2.828 af, Depth> 2.47"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 9.00-40.00 hrs, dt= 0.10 hrs Huff B70 0-10sm 4Q scaled to 24.00 hrs 10-Year Rainfall=5.15"

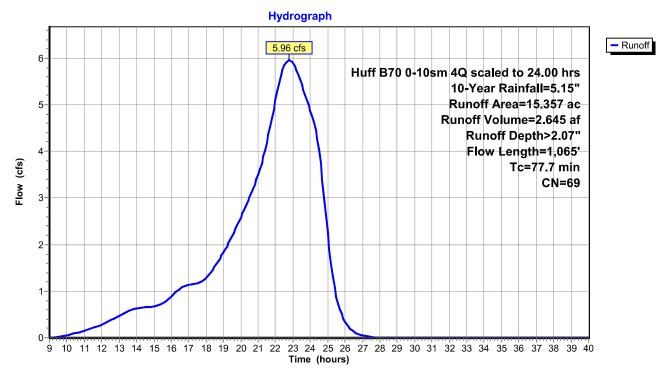
Area	(ac) (CN	Desc	cription				
4.	4.145 61 >75% Grass cover, Good, HSG B							
2.099 80 >75% Grass cover, Good, HSG D								
0.	286	85	Grav	el roads, l	HSG B			
0.	007	91	Grav	el roads, l	HSG D			
0.	239	58	Mea	dow, non-g	grazed, HS	G B		
0.	346	98	Roof	s, HSG B				
4.	465	75	Row	crops, SR	t + CR, Goo	od, HSG B		
0.	124		Row	crops, SR	t + CR, Goo	od, HSG C		
2.	2.030 85 Row crops, SR + CR, Good, HSG D							
13.	13.741 74 Weighted Average							
13.	395		97.4	8% Pervio	us Area			
0.	346		2.52	% Impervi	ous Area			
Тс	Length		ope	Velocity	Capacity	Description		
(min)	(feet)) (1	ft/ft)	(ft/sec)	(cfs)			
7.6	100	0.0	446	0.22		Sheet Flow,		
						Cultivated: Residue>20% n= 0.170 P2= 3.40"		
8.6	640	0.0	188	1.23		Shallow Concentrated Flow,		
						Cultivated Straight Rows Kv= 9.0 fps		
16.2	740	Tot	al					

Subcatchment S-2: Subcat S-2

Prepared by TRC Companies HydroCAD® 10.20-3c s/n 01402 © 2023 HydroCAD Software Solutions LLC

Hydrograph for Subcatchment S-2: Subcat S-2

	_ .	_	– "	·	_ .	_	_
Time	Precip.	Excess	Runoff	Time	Precip.	Excess	Runoff
(hours)	(inches)	(inches)	(cfs)	(hours)	(inches)	(inches)	(cfs)
9.00 9.50	0.97 1.03	0.02 0.03	0.18 0.26	35.00 35.50	5.15 5.15	2.48 2.48	0.00 0.00
10.00	1.03	0.03	0.20	36.00	5.15	2.48	0.00
10.00	1.16	0.04	0.38	36.50	5.15	2.48	0.00
11.00	1.23	0.07	0.44	37.00	5.15	2.48	0.00
11.50	1.30	0.09	0.55	37.50	5.15	2.48	0.00
12.00	1.39	0.11	0.68	38.00	5.15	2.48	0.00
12.50	1.48	0.14	0.78	38.50	5.15	2.48	0.00
13.00	1.57	0.17	0.85	39.00	5.15	2.48	0.00
13.50	1.65	0.20	0.89	39.50	5.15	2.48	0.00
14.00	1.73	0.23	0.85	40.00	5.15	2.48	0.00
14.50	1.80	0.26	0.79				
15.00	1.88 1.98	0.30 0.34	0.98 1.26				
15.50 16.00	2.09	0.34	1.20				
16.50	2.09	0.39	1.35				
17.00	2.28	0.49	1.31				
17.50	2.38	0.54	1.59				
18.00	2.51	0.61	1.94				
18.50	2.65	0.69	2.31				
19.00	2.81	0.79	2.71				
19.50	2.99	0.90	3.14				
20.00	3.19	1.03	3.59				
20.50 21.00	3.41 3.66	1.18 1.35	4.08 5.00				
21.00	3.96	1.55	6.11				
22.00	4.28	1.81	6.48				
22.50	4.55	2.01	5.70				
23.00	4.78	2.19	4.85				
23.50	4.98	2.35	4.27				
24.00	5.15	2.48	3.66				
24.50	5.15	2.48	0.10				
25.00	5.15	2.48	0.00				
25.50	5.15	2.48 2.48	0.00				
26.00 26.50	5.15 5.15	2.48 2.48	0.00 0.00				
27.00	5.15	2.48	0.00				
27.50	5.15	2.48	0.00				
28.00	5.15	2.48	0.00				
28.50	5.15	2.48	0.00				
29.00	5.15	2.48	0.00				
29.50	5.15	2.48	0.00				
30.00	5.15	2.48	0.00				
30.50 31.00	5.15 5.15	2.48 2.48	0.00 0.00				
31.00	5.15	2.48 2.48	0.00				
32.00	5.15	2.48	0.00				
32.50	5.15	2.48	0.00				
33.00	5.15	2.48	0.00				
33.50	5.15	2.48	0.00				
34.00	5.15	2.48	0.00				
34.50	5.15	2.48	0.00				
				ļ			


Summary for Subcatchment S-3: Subcat S-3

Runoff = 5.96 cfs @ 22.78 hrs, Volume= Routed to nonexistent node 2L 2.645 af, Depth> 2.07"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 9.00-40.00 hrs, dt= 0.10 hrs Huff B70 0-10sm 4Q scaled to 24.00 hrs 10-Year Rainfall=5.15"

_	Area	(ac) C	N Des	cription							
_	0.	226 8	35 Grav	Gravel roads, HSG B							
	0.	078 9	91 Grav	Gravel roads, HSG D							
	6.	333 !	58 Mea	idow, non-g	grazed, HS	G B					
	3.	808 7	8 78 Meadow, non-grazed, HSG D								
				• •	R + CR, Goo						
				• •	R + CR, Goo						
_					R + CR, Goo	od, HSG D					
				ghted Aver	•						
	15.	357	100.	.00% Pervi	ous Area						
	_										
	Tc	Length	Slope			Description					
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	6.3	100	0.0723	0.27		Sheet Flow,					
						Cultivated: Residue>20% n= 0.170 P2= 3.40"					
	1.6	174	0.0430	1.87		Shallow Concentrated Flow,					
	00 <i>(</i>	470	0.0000	0.40		Cultivated Straight Rows Kv= 9.0 fps					
	30.1	179	0.0002	0.10		Shallow Concentrated Flow,					
	.	10	0.0400	0.40		Short Grass Pasture Kv= 7.0 fps					
	0.1	12	0.0180	2.16		Shallow Concentrated Flow,					
	00.0	000	0.0040	0.05		Unpaved Kv= 16.1 fps					
	39.6	600	0.0013	0.25		Shallow Concentrated Flow,					
_						Short Grass Pasture Kv= 7.0 fps					
	77 7	1 065	Total								

77.7 1,065 Total

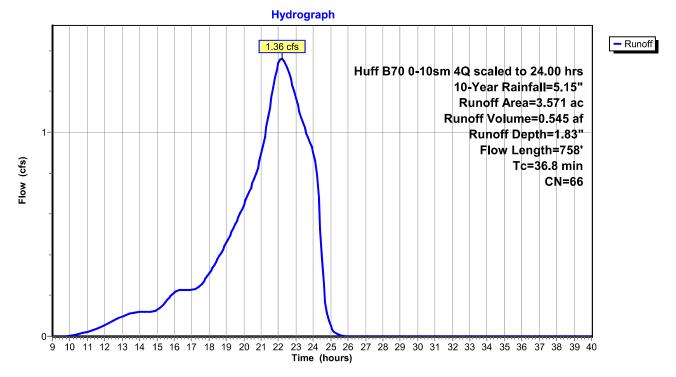
Subcatchment S-3: Subcat S-3

Hydrograph for Subcatchment S-3: Subcat S-3

Time	Precip.	Excess	Runoff	Time	Precip.	Excess	Runoff
(hours)	(inches)	(inches)	(cfs)	(hours)	(inches)	(inches)	(cfs)
9.00	0.97	0.00	0.00	35.00	5.15	2.07	0.00
9.50	1.03	0.00	0.02	35.50	5.15	2.07	0.00
10.00	1.09	0.01	0.05	36.00	5.15	2.07	0.00
10.50	1.16	0.01	0.10	36.50	5.15	2.07	0.00
11.00	1.23	0.02	0.15	37.00	5.15	2.07	0.00
11.50	1.30	0.03	0.21	37.50	5.15	2.07	0.00
12.00	1.39	0.05	0.28	38.00	5.15	2.07	0.00
12.50	1.48	0.07	0.37	38.50	5.15	2.07	0.00
13.00	1.57	0.09	0.47	39.00	5.15	2.07	0.00
13.50 14.00	1.65 1.73	0.11 0.13	0.56 0.63	39.50 40.00	5.15 5.15	2.07 2.07	0.00 0.00
14.00	1.80	0.13	0.66	40.00	5.15	2.07	0.00
14.00	1.88	0.13	0.66				
15.50	1.98	0.21	0.00				
16.00	2.09	0.25	0.88				
16.50	2.19	0.29	1.06				
17.00	2.28	0.32	1.14				
17.50	2.38	0.37	1.17				
18.00	2.51	0.42	1.28				
18.50	2.65	0.49	1.51				
19.00	2.81	0.57	1.82				
19.50	2.99	0.67	2.18				
20.00	3.19	0.77	2.58				
20.50	3.41	0.90	3.01				
21.00	3.66	1.05	3.50				
21.50	3.96	1.24	4.18				
22.00	4.28 4.55	1.45 1.64	5.10				
22.50 23.00	4.55	1.80	5.84 5.89				
23.50	4.98	1.94	5.44				
24.00	5.15	2.07	4.86				
24.50	5.15	2.07	4.03				
25.00	5.15	2.07	2.25				
25.50	5.15	2.07	0.88				
26.00	5.15	2.07	0.34				
26.50	5.15	2.07	0.13				
27.00	5.15	2.07	0.05				
27.50	5.15	2.07	0.01				
28.00	5.15	2.07	0.00				
28.50	5.15	2.07	0.00				
29.00	5.15	2.07	0.00				
29.50 30.00	5.15 5.15	2.07 2.07	0.00 0.00				
30.00	5.15	2.07	0.00				
30.30	5.15	2.07	0.00				
31.50	5.15	2.07	0.00				
32.00	5.15	2.07	0.00				
32.50	5.15	2.07	0.00				
33.00	5.15	2.07	0.00				
33.50	5.15	2.07	0.00				
34.00	5.15	2.07	0.00				
34.50	5.15	2.07	0.00				

Summary for Subcatchment S-4: Subcat S-4

Runoff = 1.36 cfs @ 22.18 hrs, Volume= 0 Routed to nonexistent node 2L


0.545 af, Depth= 1.83"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 9.00-40.00 hrs, dt= 0.10 hrs Huff B70 0-10sm 4Q scaled to 24.00 hrs 10-Year Rainfall=5.15"

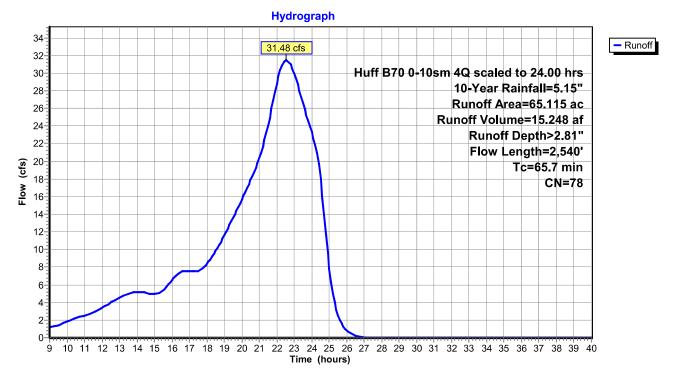
_	Area	(ac) C	N Des	cription							
	2.	251 !	58 Mea	leadow, non-grazed, HSG B							
	0.	624	78 Mea	dow, non-g	grazed, HS	G D					
					t + CR, Goo						
	0.	448 8	35 Row	v crops, SR	t + CR, Go	od, HSG D					
	3.571 66 Weighted Average										
	3.	571	100.	00% Pervi	ous Area						
	_				•						
	Tc	Length	Slope	Velocity	Capacity	Description					
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	17.8	100	0.0107	0.09		Sheet Flow,					
						Grass: Dense n= 0.240 P2= 3.40"					
	15.2	456	0.0051	0.50		Shallow Concentrated Flow,					
						Short Grass Pasture Kv= 7.0 fps					
	3.8	202	0.0096	0.88		Shallow Concentrated Flow,					
_						Cultivated Straight Rows Kv= 9.0 fps					

36.8 758 Total

Subcatchment S-4: Subcat S-4

Hy

ydrograph	for Subcatchment S-4: Subcat S-4	
-----------	----------------------------------	--


(hours) (inch 9.00 0 9.50 1 10.00 1 10.50 1 11.00 1 12.00 1 12.50 1 13.00 1 14.00 1 14.50 1 15.00 1	bcip. Excess 0.97 0.00 1.03 0.00 1.09 0.00 1.16 0.00 1.23 0.01 1.39 0.02 1.48 0.04 1.57 0.05 1.65 0.07 1.73 0.08 1.80 0.10 1.88 0.12 1.98 0.15	Runoff (cfs) 0.00 0.00 0.01 0.02 0.04 0.06 0.08 0.10 0.11 0.12 0.12 0.12 0.13 0.17	Time (hours) 35.00 36.00 36.50 37.00 37.50 38.00 38.50 39.00 39.50 40.00	Precip. (inches) 5.15 5.15 5.15 5.15 5.15 5.15 5.15 5.1	Excess (inches) 1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83	Runoff (cfs) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.23 0.23 0.25 0.31 0.38 0.46 0.55 0.64 0.75 0.90 1.12 1.34 1.32 1.17 1.02 0.90 0.38 0.05 0.01 0.00				

Summary for Subcatchment S-5: Subcat S-5

Runoff = 31.48 cfs @ 22.54 hrs, Volume= Routed to nonexistent node 2L 15.248 af, Depth> 2.81"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 9.00-40.00 hrs, dt= 0.10 hrs Huff B70 0-10sm 4Q scaled to 24.00 hrs 10-Year Rainfall=5.15"

 Area	(ac)	CN	Desc	cription								
0.	018	85	Grav	vel roads, l	HSG B							
0.	057	91	Grav	el roads, l	HSG D							
7.	761	58	Mea	adow, non-grazed, HSG B								
5.	704	78	Mea	eadow, non-grazed, HSG D								
15.	167	75	Row	ow crops, SR + CR, Good, HSG B								
4.	335	82	Row	crops, SR	t + CR, Goo	od, HSG C						
27.	064	85			t + CR, Goo	od, HSG D						
	661	73		ds, Fair, ⊦								
 0.	347	79	Woo	ds, Fair, F	ISG D							
65.	115	78	Weig	ghted Aver	age							
65.	115		100.0	00% Pervi	ous Area							
Тс	Lengt		Slope	Velocity	Capacity	Description						
 (min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)							
12.9	10	0 0	.0238	0.13		Sheet Flow,						
						Grass: Dense n= 0.240 P2= 3.40"						
21.5	1,06	60	.0140	0.83		Shallow Concentrated Flow,						
						Short Grass Pasture Kv= 7.0 fps						
31.3	1,37	4 0	.0066	0.73		Shallow Concentrated Flow,						
						Cultivated Straight Rows Kv= 9.0 fps						
65.7	2,54	0 Т	otal									

Subcatchment S-5: Subcat S-5

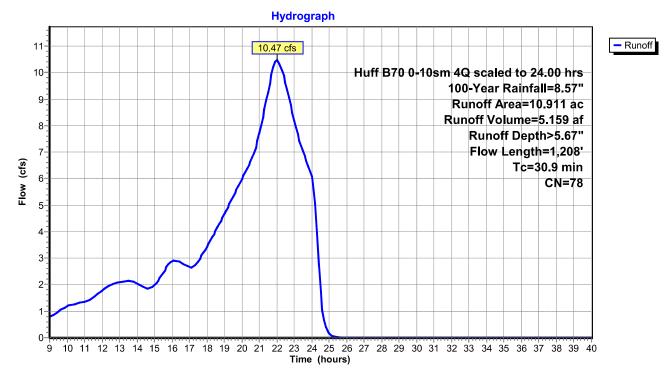
Page 34

Prepared by TRC Companies HydroCAD® 10.20-3c s/n 01402 © 2023 HydroCAD Software Solutions LLC

Hydrograph for Subcatchment S-5: Subcat S-5

Time	Precip.	Excess	Runoff	Time	Precip.	Excess	Runoff
(hours)	(inches)	(inches)	(cfs)	(hours)	(inches)	(inches)	(cfs)
9.00	0.97	0.05	1.24	35.00	5.15	2.84	0.00
9.50	1.03	0.07	1.43	35.50	5.15	2.84	0.00
10.00	1.09	0.08	1.81	36.00	5.15	2.84	0.00
10.50	1.16	0.10	2.22	36.50	5.15	2.84	0.00
11.00	1.23	0.13	2.53	37.00	5.15	2.84	0.00
11.50	1.30	0.15	2.85	37.50	5.15	2.84	0.00
12.00 12.50	1.39 1.48	0.19 0.22	3.34 3.99	38.00 38.50	5.15 5.15	2.84 2.84	0.00 0.00
12.50	1.40	0.22	3.99 4.57	39.00	5.15	2.84	0.00
13.50	1.65	0.30	4.98	39.50	5.15	2.84	0.00
14.00	1.73	0.34	5.20	40.00	5.15	2.84	0.00
14.50	1.80	0.38	5.09				
15.00	1.88	0.42	4.91				
15.50	1.98	0.47	5.39				
16.00	2.09	0.53	6.53				
16.50	2.19	0.59	7.45				
17.00	2.28	0.65	7.57				
17.50 18.00	2.38 2.51	0.71 0.79	7.55 8.35				
18.50	2.65	0.79	9.82				
19.00	2.81	1.00	11.61				
19.50	2.99	1.12	13.56				
20.00	3.19	1.27	15.66				
20.50	3.41	1.43	17.85				
21.00	3.66	1.62	20.35				
21.50	3.96	1.86	24.07				
22.00	4.28	2.11	28.78				
22.50 23.00	4.55 4.78	2.34 2.53	31.46				
23.00	4.78	2.55	29.97 26.63				
24.00	5.15	2.84	23.34				
24.50	5.15	2.84	17.95				
25.00	5.15	2.84	7.84				
25.50	5.15	2.84	2.52				
26.00	5.15	2.84	0.80				
26.50	5.15	2.84	0.24				
27.00	5.15	2.84	0.06				
27.50 28.00	5.15 5.15	2.84 2.84	0.00 0.00				
28.50	5.15	2.84	0.00				
29.00	5.15	2.84	0.00				
29.50	5.15	2.84	0.00				
30.00	5.15	2.84	0.00				
30.50	5.15	2.84	0.00				
31.00	5.15	2.84	0.00				
31.50	5.15	2.84	0.00				
32.00	5.15	2.84	0.00				
32.50 33.00	5.15 5.15	2.84 2.84	0.00 0.00				
33.50	5.15	2.84	0.00				
34.00	5.15	2.84	0.00				
34.50	5.15	2.84	0.00				

Time span=9.00-40.00 hrs, dt=0.10 hrs, 311 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method


Subcatchment S-1: Subcat S-1	Runoff Area=10.911 ac 0.00% Impervious Runoff Depth>5.67" Flow Length=1,208' Tc=30.9 min CN=78 Runoff=10.47 cfs 5.159 af
Subcatchment S-2: Subcat S-2	Runoff Area=13.741 ac 2.52% Impervious Runoff Depth>5.27" Flow Length=740' Tc=16.2 min CN=74 Runoff=12.94 cfs 6.033 af
Subcatchment S-3: Subcat S-3	Runoff Area=15.357 ac 0.00% Impervious Runoff Depth>4.79" Flow Length=1,065' Tc=77.7 min CN=69 Runoff=12.29 cfs 6.124 af
Subcatchment S-4: Subcat S-4	Runoff Area=3.571 ac 0.00% Impervious Runoff Depth>4.44" Flow Length=758' Tc=36.8 min CN=66 Runoff=2.92 cfs 1.321 af
Subcatchment S-5: Subcat S-5	Runoff Area=65.115 ac 0.00% Impervious Runoff Depth>5.71" Flow Length=2,540' Tc=65.7 min CN=78 Runoff=59.14 cfs 30.998 af
Total Runoff Area = 108.	695 ac Runoff Volume = 49.634 af Average Runoff Depth = 5.48" 99.68% Pervious = 108.349 ac 0.32% Impervious = 0.346 ac

Summary for Subcatchment S-1: Subcat S-1

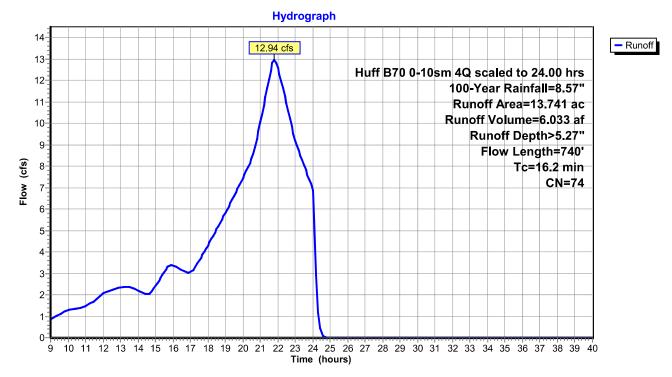
Runoff = 10.47 cfs @ 22.01 hrs, Volume= Routed to nonexistent node 2L 5.159 af, Depth> 5.67"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 9.00-40.00 hrs, dt= 0.10 hrs Huff B70 0-10sm 4Q scaled to 24.00 hrs 100-Year Rainfall=8.57"

Area	(ac) C	N Desc	cription							
0.	026 6	61 >75 ⁹	75% Grass cover, Good, HSG B							
0.	078 8	35 Grav	Gravel roads, HSG B							
0.	038 9)1 Grav	/el roads, l	HSG D						
0.	123 5	58 Mea	dow, non-g	grazed, HS	G B					
0.	037 7	'8 Mea	dow, non-g	grazed, HS	G D					
6.	347 7	'5 Row	crops, SR	R + CR, Goo	od, HSG B					
1.	730 8	82 Row	crops, SR	R + CR, Goo	od, HSG C					
2.	531 8	85 Row	crops, SR	R + CR, Goo	od, HSG D					
10.	911 7	'8 Weig	ghted Aver	age						
10.	911		00% Pervi							
Тс	Length	Slope	Velocity	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
10.2	100	0.0217	0.16		Sheet Flow,					
					Cultivated: Residue>20% n= 0.170 P2= 3.40"					
2.5	186	0.0189	1.24		Shallow Concentrated Flow,					
					Cultivated Straight Rows Kv= 9.0 fps					
0.7	63	0.0304	1.57		Shallow Concentrated Flow,					
					Cultivated Straight Rows Kv= 9.0 fps					
12.5	598	0.0078	0.79		Shallow Concentrated Flow,					
					Cultivated Straight Rows Kv= 9.0 fps					
0.1	12	0.0117	1.74		Shallow Concentrated Flow,					
					Unpaved Kv= 16.1 fps					
4.9	249	0.0088	0.84		Shallow Concentrated Flow,					
					Cultivated Straight Rows Kv= 9.0 fps					
30.9	1,208	Total								

Subcatchment S-1: Subcat S-1

ydroCAD® 10.20-3c s/n 01402 © 2023 HydroCAD Software Solutions LLC Hydrograph for Subcatchment S-1: Subcat S-1 Time Precip. Excess Runoff Time Precip. Excess Runoff


Time (houro)	Precip.	Excess	Runoff	Time	Precip.	Excess	Runoff
(hours)	(inches)	(inches)	(cfs)	(hours)	(inches)	(inches)	(cfs)
9.00	1.61	0.28	0.80	35.00	8.57	5.92	0.00
9.50	1.71	0.33	0.99	35.50	8.57	5.92	0.00
10.00	1.82	0.39	1.18	36.00	8.57	5.92	0.00
10.50 11.00	1.93	0.45	1.28	36.50	8.57	5.92	0.00
	2.04 2.17	0.51	1.35 1.52	37.00	8.57	5.92	0.00
11.50 12.00	2.17	0.58 0.67	1.52	37.50 38.00	8.57 8.57	5.92 5.92	0.00 0.00
12.00	2.31	0.07	2.00	38.50	8.57	5.92	0.00
12.50	2.40	0.76	2.00	39.00	8.57	5.92	0.00
13.50	2.01	0.80	2.10	39.00	8.57	5.92	0.00
14.00	2.73	1.05	2.10	40.00	8.57	5.92	0.00
14.00	3.00	1.13	1.87	40.00	0.57	5.92	0.00
15.00	3.13	1.22	1.07				
15.50	3.29	1.34	2.45				
16.00	3.47	1.48	2.89				
16.50	3.64	1.60	2.84				
17.00	3.79	1.72	2.65				
17.50	3.97	1.86	2.88				
18.00	4.17	2.03	3.43				
18.50	4.41	2.22	4.04				
19.00	4.68	2.44	4.66				
19.50	4.98	2.69	5.31				
20.00	5.31	2.98	5.97				
20.50	5.67	3.29	6.64				
21.00	6.09	3.66	7.71				
21.50	6.60	4.11	9.26				
22.00	7.12	4.59	10.47				
22.50	7.58	5.00	9.61				
23.00	7.96	5.35	8.19				
23.50	8.29	5.66	7.04				
24.00	8.57	5.92	6.09				
24.50	8.57	5.92	1.71				
25.00	8.57	5.92	0.15				
25.50	8.57	5.92	0.01				
26.00	8.57	5.92	0.00				
26.50	8.57	5.92	0.00				
27.00	8.57	5.92	0.00				
27.50	8.57	5.92	0.00				
28.00	8.57	5.92	0.00				
28.50	8.57	5.92	0.00				
29.00	8.57	5.92	0.00				
29.50	8.57	5.92	0.00				
30.00	8.57	5.92	0.00				
30.50	8.57	5.92	0.00				
31.00	8.57	5.92	0.00				
31.50	8.57	5.92	0.00				
32.00	8.57	5.92	0.00				
32.50 33.00	8.57 8.57	5.92	0.00				
33.00	8.57 8.57	5.92 5.92	0.00 0.00				
33.50	8.57 8.57	5.92 5.92	0.00				
34.00	8.57	5.92	0.00				
54.50	0.07	5.52	0.00				
			l				

Summary for Subcatchment S-2: Subcat S-2

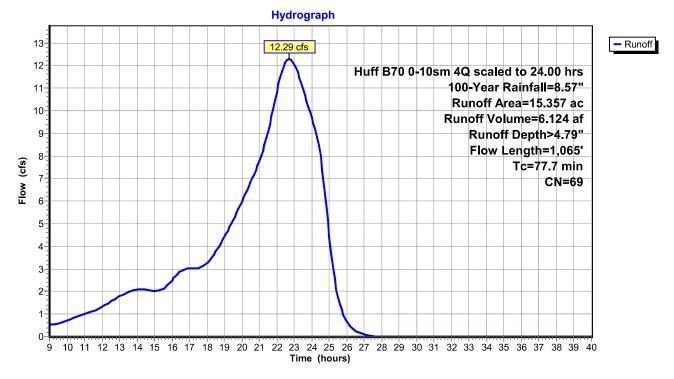
Runoff = 12.94 cfs @ 21.80 hrs, Volume= 6.033 af, Depth> 5.27" Routed to nonexistent node 2L

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 9.00-40.00 hrs, dt= 0.10 hrs Huff B70 0-10sm 4Q scaled to 24.00 hrs 100-Year Rainfall=8.57"

Area	(ac) (CN D	escri	iption							
					over, Good	HSG B					
				5% Grass cover, Good, HSG D							
				avel roads, HSG B							
0.				l roads, l							
0.	.239	58 N	leado	ow, non-g	grazed, HS	GB					
0.	.346	98 R	oofs	, HSG B							
4.	.465	75 R	low c	rops, SR	t + CR, Goo	od, HSG B					
0.	.124										
2.	.030	<u>85 R</u>	low c	rops, SR	<u>t + CR, Goo</u>	od, HSG D					
13.	.741	74 V	/eigh	nted Aver	age						
13.	.395	9	7.489	% Pervio	us Area						
0.	.346	2	.52%	o Impervi	ous Area						
		_			_						
Tc	Length			Velocity	Capacity	Description					
(min)	(feet)	(ft/	ft)	(ft/sec)	(cfs)						
7.6	100	0.044	46	0.22		Sheet Flow,					
						Cultivated: Residue>20%					
8.6	640	0.018	38	1.23		Shallow Concentrated Flow,					
						Cultivated Straight Rows Kv= 9.0 fps					
16.2	740	Tota									

Subcatchment S-2: Subcat S-2

CAD® 10.20-3c s/n 01402 © 2023 HydroCAD Software Solutions LLC Hydrograph for Subcatchment S-2: Subcat S-2


Time	Precip.	Excess	Runoff	Time	Precip.	Excess	Runoff
(hours)	(inches)	(inches)	(cfs)	(hours)	(inches)	(inches)	(cfs)
9.00	1.61	0.19	0.86	35.00	8.57	5.44	0.00
9.50	1.71	0.22	1.09	35.50	8.57	5.44	0.00
10.00	1.82	0.27	1.27	36.00	8.57	5.44	0.00
10.50	1.93	0.32	1.36	36.50	8.57	5.44	0.00
11.00	2.04	0.37	1.45	37.00	8.57	5.44	0.00
11.50	2.17	0.43	1.72	37.50	8.57	5.44	0.00
12.00	2.31	0.50	2.04	38.00	8.57	5.44	0.00
12.50	2.46	0.58	2.23	38.50	8.57	5.44	0.00
13.00	2.61	0.67	2.34	39.00	8.57	5.44	0.00
13.50	2.75	0.75	2.37	39.50	8.57	5.44	0.00
14.00	2.88	0.83	2.20	40.00	8.57	5.44	0.00
14.50 15.00	3.00 3.13	0.91 0.99	2.00 2.42				
15.00	3.13	1.10	2.42 3.05				
16.00	3.29	1.10	3.36				
16.50	3.64	1.34	3.16				
17.00	3.79	1.45	3.00				
17.50	3.97	1.57	3.60				
18.00	4.17	1.73	4.30				
18.50	4.41	1.90	5.04				
19.00	4.68	2.11	5.82				
19.50	4.98	2.35	6.62				
20.00	5.31	2.61	7.44				
20.50	5.67	2.91	8.31				
21.00	6.09	3.26	10.03				
21.50	6.60	3.69	12.04				
22.00	7.12	4.15	12.58				
22.50 23.00	7.58 7.96	4.55 4.89	10.92 9.20				
23.00	8.29	4.89 5.18	9.20 8.05				
24.00	8.57	5.44	6.86				
24.50	8.57	5.44	0.18				
25.00	8.57	5.44	0.00				
25.50	8.57	5.44	0.00				
26.00	8.57	5.44	0.00				
26.50	8.57	5.44	0.00				
27.00	8.57	5.44	0.00				
27.50	8.57	5.44	0.00				
28.00	8.57	5.44	0.00				
28.50	8.57	5.44	0.00				
29.00 29.50	8.57 8.57	5.44 5.44	0.00 0.00				
30.00	8.57	5.44 5.44	0.00				
30.50	8.57	5.44	0.00				
31.00	8.57	5.44	0.00				
31.50	8.57	5.44	0.00				
32.00	8.57	5.44	0.00				
32.50	8.57	5.44	0.00				
33.00	8.57	5.44	0.00				
33.50	8.57	5.44	0.00				
34.00	8.57	5.44	0.00				
34.50	8.57	5.44	0.00				

Summary for Subcatchment S-3: Subcat S-3

Runoff = 12.29 cfs @ 22.72 hrs, Volume= Routed to nonexistent node 2L 6.124 af, Depth> 4.79"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 9.00-40.00 hrs, dt= 0.10 hrs Huff B70 0-10sm 4Q scaled to 24.00 hrs 100-Year Rainfall=8.57"

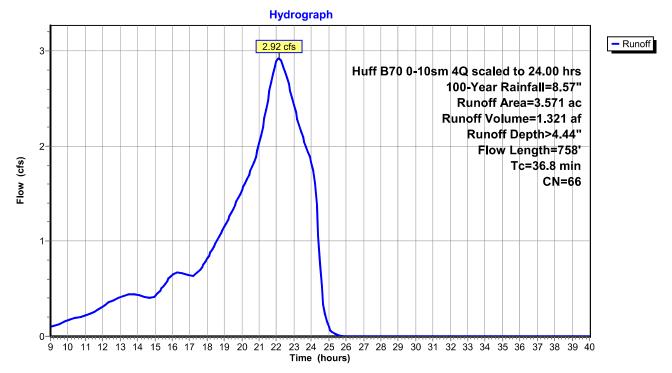
Area	(ac) C	N Dese	cription					
0.	226 8	35 Grav	/el roads, ł	HSG B				
0.	078 9)1 Grav	/el roads, l	HSG D				
6.	333 5	58 Mea	Meadow, non-grazed, HSG B					
3.	3.808 78		Meadow, non-grazed, HSG D					
4.	4.337 75		Row crops, SR + CR, Good, HSG B					
0.	0.245 82		Row crops, SR + CR, Good, HSG C					
0.329 85 Row crops, SR + CR, Good, HSG D								
15.	15.357 69 Weighted Average							
15.	357	100.	00% Pervi	ous Area				
Тс	Length	Slope	Velocity	Capacity	Description			
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)				
6.3	100	0.0723	0.27		Sheet Flow,			
					Cultivated: Residue>20%			
1.6	174	0.0430	1.87		Shallow Concentrated Flow,			
					Cultivated Straight Rows Kv= 9.0 fps			
30.1	179	0.0002	0.10		Shallow Concentrated Flow,			
					Short Grass Pasture Kv= 7.0 fps			
0.1	12	0.0180	2.16		Shallow Concentrated Flow,			
					Unpaved Kv= 16.1 fps			
39.6	600	0.0013	0.25		Shallow Concentrated Flow,			
					Short Grass Pasture Kv= 7.0 fps			
77.7	1,065	Total						

Subcatchment S-3: Subcat S-3

HydroCAD® 10.20-3c s/n 01402 © 2023 HydroCAD Software Solutions LLC Hydrograph for Subcatchment S-3: Subcat S-3 Time Precip. Excess Runoff (hours) (inches) (cfs) Time Precip. Excess Runoff 9.00 1.61 0.10 0.53 35.00 8.57 4.84 0.00 9.50 1.71 0.12 0.59 35.50 8.57 4.84 0.00

<u>(hour</u>	s) (inches)) (Inches)	(CfS)	(hours)	(inches)	(Inches)	(CfS)
9.0			0.53	35.00	8.57	4.84	0.00
9.5			0.59	35.50	8.57	4.84	0.00
10.0			0.72	36.00	8.57	4.84	0.00
10.5			0.88	36.50	8.57	4.84	0.00
11.(1.01	37.00	8.57	4.84	0.00
11.5	50 2.17	0.28	1.14	37.50	8.57	4.84	0.00
12.0	0 2.31	0.34	1.31	38.00	8.57	4.84	0.00
12.5			1.56	38.50	8.57	4.84	0.00
13.0	0 2.61		1.80	39.00	8.57	4.84	0.00
13.5	50 2.75	5 0.54	1.98	39.50	8.57	4.84	0.00
14.(00 2.88	3 0.61	2.09	40.00	8.57	4.84	0.00
14.5	50 3.00	0.67	2.09				
15.0	00 3.13	3 0.74	2.02				
15.5	50 3.29	0.83	2.12				
16.0	00 3.47	0.94	2.50				
16.5	50 3.64	1.04	2.89				
17.0	0 3.79) 1.13	3.03				
17.5	50 3.97	1.25	3.03				
18.0	0 4.17	1.38	3.25				
18.5	50 4.41	1.54	3.76				
19.0	0 4.68	3 1.73	4.42				
19.5	50 4.98	3 1.94	5.17				
20.0	0 5.31	2.18	5.97				
20.5	50 5.67	2.46	6.82				
21.0	00 6.09) 2.79	7.76				
21.5	50 6.60) 3.19	9.07				
22.0	0 7.12	2 3.62	10.82				
22.5	50 7.58	3.99	12.15				
23.0	00 7.96	6 4.32	12.06				
23.5	50 8.29	9 4.60	10.98				
24.0	00 8.57	4.84	9.71				
24.5	50 8.57	4.84	7.98				
25.0	0 8.57	4.84	4.43				
25.5	50 8.57	4.84	1.74				
26.0			0.67				
26.5			0.25				
27.0			0.09				
27.5			0.03				
28.0			0.00				
28.5			0.00				
29.0			0.00				
29.5			0.00				
30.0			0.00				
30.5			0.00				
31.0			0.00				
31.5			0.00				
32.0			0.00				
32.5			0.00				
33.0			0.00				
33.5			0.00				
34.0			0.00				
34.5	50 8.57	4.84	0.00				
				I			

Summary for Subcatchment S-4: Subcat S-4


Runoff = 2.92 cfs @ 22.13 hrs, Volume= 1.321 af, Depth> 4.44" Routed to nonexistent node 2L

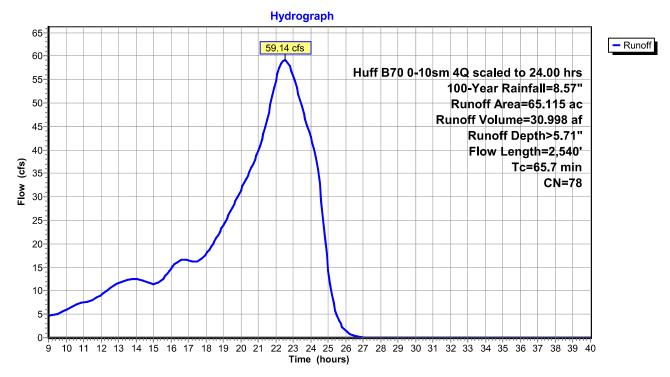
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 9.00-40.00 hrs, dt= 0.10 hrs Huff B70 0-10sm 4Q scaled to 24.00 hrs 100-Year Rainfall=8.57"

 2.251 58 Meadow, non-grazed, HSG B 0.624 78 Meadow, non-grazed, HSG D 0.248 75 Row crops, SR + CR, Good, HSG B 										
0.248 75 Row crops, SR + CR, Good, HSG B										
0.448 85 Row crops, SR + CR, Good, HSG D										
3.571 66 Weighted Average										
3.571 100.00% Pervious Area										
Tc Length Slope Velocity Capacity Description										
(min) (feet) (ft/ft) (ft/sec) (cfs)										
17.8 100 0.0107 0.09 Sheet Flow,										
Grass: Dense n= 0.240 P2= 3.40"										
15.2 456 0.0051 0.50 Shallow Concentrated Flow,										
Short Grass Pasture Kv= 7.0 fps										
3.8 202 0.0096 0.88 Shallow Concentrated Flow,										
Cultivated Straight Rows Kv= 9.0 fps										

36.8 758 Total

Subcatchment S-4: Subcat S-4

Image: Precipe and by TRC Companies ydroCAD® 10.20-3c s/n 01402 © 2023 HydroCAD Software Solutions LLC Hydrograph for Subcatchment S-4: Subcat S-4 Time Precip. Excess Runoff Time Precip. Excess Runoff (inshap) (inshap) (inshap)


Time	Precip.	Excess	Runoff	Time	Precip.	Excess	Runoff
(hours)	(inches)	(inches)	(cfs)	(hours)	(inches)	(inches)	(cfs)
9.00	1.61	0.06	0.10	35.00	8.57	4.48	0.00
9.50	1.71	0.08	0.13	35.50	8.57	4.48	0.00
10.00	1.82	0.11	0.17	36.00	8.57	4.48	0.00
10.50	1.93	0.13	0.20	36.50	8.57	4.48	0.00
11.00	2.04	0.17	0.22	37.00	8.57	4.48	0.00
11.50	2.17	0.21	0.26	37.50	8.57	4.48	0.00
12.00	2.31	0.25	0.31	38.00	8.57	4.48	0.00
12.50	2.46	0.31	0.37	38.50	8.57	4.48	0.00
13.00	2.61	0.37	0.41	39.00	8.57	4.48	0.00
13.50	2.75	0.43	0.44	39.50	8.57	4.48	0.00
14.00	2.88	0.49	0.43	40.00	8.57	4.48	0.00
14.50	3.00	0.54	0.41	10.00	0.07	1.10	0.00
15.00	3.13	0.61	0.42				
15.50	3.29	0.69	0.53				
16.00	3.47	0.79	0.65				
16.50	3.64	0.88	0.66				
17.00	3.79	0.96	0.63				
17.50	3.97	1.07	0.68				
18.00	4.17	1.19	0.82				
18.50	4.17	1.34	0.98				
19.00	4.41	1.54	1.15				
19.50	4.98	1.71	1.34				
20.00	5.31	1.94	1.53				
20.50	5.67	2.20	1.74				
21.00	6.09	2.51	2.03				
21.50	6.60	2.89	2.47				
22.00	7.12	3.30	2.89				
22.50	7.58	3.67	2.78				
23.00	7.96	3.97	2.43				
23.50	8.29	4.24	2.10				
24.00	8.57	4.48	1.83				
24.50	8.57	4.48	0.76				
25.00	8.57	4.48	0.10				
25.50	8.57	4.48	0.01				
26.00	8.57	4.48	0.00				
26.50	8.57	4.48	0.00				
27.00	8.57	4.48	0.00				
27.50	8.57	4.48	0.00				
28.00	8.57	4.48	0.00				
28.50	8.57	4.48	0.00				
29.00	8.57	4.48	0.00				
29.50	8.57	4.48	0.00				
30.00	8.57	4.48	0.00				
30.50	8.57	4.48	0.00				
31.00	8.57	4.48	0.00				
31.50	8.57	4.48	0.00				
32.00	8.57	4.48	0.00				
32.50	8.57	4.48	0.00				
33.00	8.57	4.48	0.00				
33.50	8.57	4.48	0.00				
34.00	8.57	4.48	0.00				
34.50	8.57	4.48	0.00				

Summary for Subcatchment S-5: Subcat S-5

Runoff = 59.14 cfs @ 22.51 hrs, Volume= 30.998 af, Depth> 5.71" Routed to nonexistent node 2L

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 9.00-40.00 hrs, dt= 0.10 hrs Huff B70 0-10sm 4Q scaled to 24.00 hrs 100-Year Rainfall=8.57"

 Area	(ac)	CN	Desc	cription		
0.	018	85	Grav	el roads, l	HSG B	
0.	057	91	Grav	el roads, l	HSG D	
7.	761	58	Mead	dow, non-g	grazed, HS	G B
5.	704	78	Mead	dow, non-g	grazed, HS	G D
15.	167	75	Row	crops, SR	+ CR, Goo	od, HSG B
4.	335	82	Row	crops, SR	t + CR, Goo	od, HSG C
27.	064	85		crops, SR	t + CR, Goo	od, HSG D
4.	661	73		ds, Fair, ⊦		
 0.	347	79	Woo	ds, Fair, ⊦	ISG D	
65.	115	78	Weig	ghted Aver	age	
65.	115		100.0	00% Pervi	ous Area	
Тс	Lengt		Slope	Velocity	Capacity	Description
 (min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)	
12.9	10	0 0	0.0238	0.13		Sheet Flow,
						Grass: Dense n= 0.240 P2= 3.40"
21.5	1,06	6 0	0.0140	0.83		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
31.3	1,37	4 (0.0066	0.73		Shallow Concentrated Flow,
						Cultivated Straight Rows Kv= 9.0 fps
65.7	2,54	ר 0	Fotal			

Subcatchment S-5: Subcat S-5

Page 50

Hydrograph for Subcatchment S-5: Subcat S-5

Time	Precip.	Excess	Runoff	Time	Precip.	Excess	Runoff
(hours)	(inches)	(inches)	(cfs)	(hours)	(inches)	(inches)	(cfs)
9.00	1.61	0.28	4.72	35.00	8.57	5.92	0.00
9.50	1.71	0.33	5.03	35.50	8.57	5.92	0.00
10.00	1.82	0.39	5.94	36.00	8.57	5.92	0.00
10.50	1.93	0.45	6.89	36.50	8.57	5.92	0.00
11.00	2.04	0.51	7.51	37.00	8.57	5.92	0.00
11.50	2.17	0.58	8.09	37.50	8.57	5.92	0.00
12.00	2.31	0.67	9.14	38.00	8.57	5.92	0.00
12.50	2.46	0.76	10.52	38.50	8.57	5.92	0.00
13.00	2.61	0.86	11.67	39.00	8.57	5.92	0.00
13.50	2.75	0.95	12.36	39.50	8.57	5.92	0.00
14.00	2.88	1.05	12.59	40.00	8.57	5.92	0.00
14.50	3.00	1.13	12.08				
15.00	3.13	1.22	11.43				
15.50	3.29	1.34	12.33				
16.00	3.47	1.48	14.67				
16.50	3.64	1.60	16.46				
17.00	3.79	1.72	16.49				
17.50	3.97	1.86	16.22				
18.00	4.17	2.03	17.70				
18.50	4.41	2.22	20.54				
19.00	4.68	2.44	23.95				
19.50	4.98	2.69	27.59				
20.00	5.31	2.98	31.42				
20.50	5.67	3.29	35.35				
21.00	6.09	3.66	39.75				
21.50	6.60	4.11	46.39				
22.00	7.12	4.59	54.74				
22.50	7.58	5.00	59.14				
23.00	7.96	5.35	55.78				
23.50	8.29	5.66	49.16				
24.00	8.57	5.92	42.79				
24.50	8.57	5.92	32.75				
25.00 25.50	8.57	5.92	14.30 4.60				
26.00	8.57 8.57	5.92 5.92	4.00 1.46				
26.50	8.57	5.92	0.44				
20.00	8.57	5.92	0.44				
27.50	8.57	5.92	0.01				
28.00	8.57	5.92	0.00				
28.50	8.57	5.92	0.00				
29.00	8.57	5.92	0.00				
29.50	8.57	5.92	0.00				
30.00	8.57	5.92	0.00				
30.50	8.57	5.92	0.00				
31.00	8.57	5.92	0.00				
31.50	8.57	5.92	0.00				
32.00	8.57	5.92	0.00				
32.50	8.57	5.92	0.00				
33.00	8.57	5.92	0.00				
33.50	8.57	5.92	0.00				
34.00	8.57	5.92	0.00				
34.50	8.57	5.92	0.00				

TABLE OF CONTENTS

Project Reports

- 1 Routing Diagram
- 2 Rainfall Events Listing (selected events)
- 3 Area Listing (all nodes)
- 4 Soil Listing (all nodes)
- 5 Ground Covers (all nodes)

2-Year Event

- 6 Node Listing
- 7 Subcat S-1: Subcat S-1
- 10 Subcat S-2: Subcat S-2
- 13 Subcat S-3: Subcat S-3
- 16 Subcat S-4: Subcat S-4
- 18 Subcat S-5: Subcat S-5

<u>10-Year Event</u>

- 21 Node Listing
- 22 Subcat S-1: Subcat S-1
- 25 Subcat S-2: Subcat S-2
- 28 Subcat S-3: Subcat S-3
- 31 Subcat S-4: Subcat S-4
- 33 Subcat S-5: Subcat S-5

100-Year Event

- 36 Node Listing
- 37 Subcat S-1: Subcat S-1
- 40 Subcat S-2: Subcat S-2
- 43 Subcat S-3: Subcat S-3
- 46 Subcat S-4: Subcat S-4
- 48 Subcat S-5: Subcat S-5

Attachment 4 BMP Sizing Calculations

PROJECT NAME / LOCATION: Highway 20 Solar							
SUBJECT: BMP Volume Reduction Calculations							
PREPARED BY: C. Zumm	DATE: 6/15/2023	PROJECT NO.					
CHECKED BY: A. Rowley	DATE: 6/15/2023	50015.0000.0005					

BMP Sizing

Purpose: This calculation determines the required area of Permanent Vegetation that must be implemented to meet volume reduction requirements.

Methodology: The TR-55 Method was determined to be appropriate for calculating runoff volumes. The curve number (CN) is the primary variable for calculation of runoff volumes. The Kane County Stormwater Management Ordinance requires volume reduction of 1-inch over the proposed impervious area. To be conservative, these calculations use the 2-year, 24-hour storm value of 3.34 inches over the impervious area as the standard for volume reduction.

Curve numbers are representative of existing and proposed land covers. Existing and proposed covers on-site include row crops, meadow, and gravel roads.

Variables: Q = total runoff (in), P = rainfall (in), S = potential maximum retention after runoff begins (in), I_a = initial abstraction (in)

TR-55 EXISTING SITE INFO)d)
	od)
	od)
CN=75(Row crops, SR+CR, Go	
2-year, 24-hour P= <u>3.34</u> in	
S=(1000/CN)-10	
S= 3.33	
INITIAL ABSTRACTION	
I _{a =} 0.2*S = 0.67 in	
RUNOFF	
$Q = (P-I_a)^2 / (P-I_a+S)$	
Q= 1.19 in	
RUNOFF VOLUME COMPUTATION	
TR-55	
PROPOSED SITE INFO	
CN= 58 (Meadow, non-grazed)	
2-year, 24-hour P= 3.34 in	
S=(1000/CN)-10	
S= 7.24	
INITIAL ABSTRACTION	
I _a = 1.45 in	
a	
RUNOFF	
$Q = (P-I_a)^2 / (P-I_a+S)$	
Q= 0.39 in	
REQUIRED VOLUME REDUCTION COMPUTATION	
Proposed Impevious Area= 21812 sf	
$\frac{21812}{24 \text{ hr P}=} \frac{21812}{1.00} \text{ in}$	
RUNOFF VOLUME (NO ABSTRACTIONS) V=A*P	
V= 1817.67 cf	

ACTUAL VOLUME REDUCTION COMPUTATION									
$\Delta Q = Q_{existing} - Q_{proposed}$									
Q _{existing} - Q _{proposed} =	0.80	in							
Proposed BMP AREA = A =	30000	sf							
Proposed Volume Reduction									
V=Q*A									
V=	1995	cf							

<u>Results</u>: The proposed BMP volume reduction requirements will be met by adding a minimum of 30,000 square feet (approximately 0.69 acres) of permanent vegetation.

230 W. Monroe Street, Suite 1840 Chicago, IL 60606

Decommissioning Plan

HIGHWAY 20 SOLAR PROJECT 4.99 MW (AC) SOLAR FACILITY DECOMMISSIONING PLAN

Highway 20 Solar Kane County, Illinois 60140

Prepared For:

RPIL Solar 5, LLC 879 Sanchez Street San Francisco, CA 9411

Prepared By: TRC 230 West Monroe Street

Suite 1840 Chicago, IL 60606

P/N: 500015.0000.0051, P5

June 2023

PRELIMINARY DECOMMISSIONING PLAN AND COST ESTIMATE RPIL Solar 5, LLC Highway 20 Solar

Table of Contents

BACKGROUND	1
Owner/Operator	1
Facility Description	1
DECOMMISSIONING ACTIVITIES	2
Schedule	2
Decommissioning During Construction (Abandonment of Project)	2
Decommissioning After Ceasing Operation	3
Offsite Impacts During Decommissioning	3
Dismantlement and Demolition	3
Disposal or Recycle	4
Removal of Landscape Materials and Site Stabilization:	5
PERMITTING REQUIREMENTS FOR DECOMMISSIONING	5
SOLAR DECOMMISSIONING ESTIMATE	6

RPIL Solar 5, LLC Highway 20 Solar

BACKGROUND

On behalf of RPIL Solar 5 LLC TRC has prepared this decommissioning plan and cost estimate (the Plan) for the Highway 20 Solar facility (Facility), a photovoltaic (PV) facility, Solar Energy System (SES) or Solar Farm located on Highway 20 in Kane County, Illinois. The project site is located east of Illinois Highway 47, and north of Highway 20. The Facility will consist of a 4.99-megawatt (MW) alternating current (AC) solar electrical array covering a total area of approximately 25.93 acres on an approximately 115.73-acre parcel of agricultural land. The Facility will include ground-mounted, solar arrays, perimeter security fencing, concrete pads for transformers and switch gear, and a gravel access road. The Facility will produce power using PV panels, mounted on ground support galvanized piles.

The purpose of this Plan is to provide the general scope of decommissioning work as well as a construction cost estimate for a decommissioning financial assurance mechanism of the Facility as described herein and subject to Kane County Code, Chapter 25, Zoning Ordinance Chapter 25-5-4-9 regarding Commercial Solar Energy Entities (Ordinance), as well as the Agricultural Impact Mitigation Agreement (AIMA). This document outlines the decommissioning activities required to remove above-ground structures, debris, underground foundations, and cables and restore soil and vegetation after termination of operations of the SES. This decommissioning plan and cost estimate has been prepared in accordance with the Kane County Ordinance, as well as AIMA, for approval of Highway 20 Solar.

The attached decommissioning cost estimate was prepared based on estimated quantities of site features, panels, racking, and electrical equipment from the preliminary plan set and experience in the design and construction of energy facilities and are subject to final engineering. Costs generally include contractor fees, sitework removal & restoration, racking & module removal, power conditioning equipment removal, and corresponding salvage, which reflect the overall decommissioning process. The reported costs include labor, materials, taxes, insurance, transport costs, disposal fees, equipment rental, contractor's overhead, and contractor's profit; the labor costs have been estimated using regional labor rates and labor efficiencies from the Bureau of Labor statistics along with previous decommission plan estimates completed for other similar projects.

Owner/Operator

RPIL Solar 5, LLC will be responsible for the ensuring completion of final civil and electrical engineering plans. TRC is the consultant responsible for the preparation of the independent decommissioning plan.

Facility Description

The Facility will consist of a 4.99MW AC solar electrical array covering a total area of approximately 25.93 acres on an approximately 115.73-acre parcel of agricultural land. The Facility will be secured within a security fence surrounding the solar panels and electrical equipment. The site

RPIL Solar 5, LLC Highway 20 Solar

can be accessed via lock-controlled gates located on the proposed gravel access road. The Facility will include the following site features:

- Total site development area with solar panels, associated electrical equipment, racking, and a gravel access road of approximately 24.56 acres; (fenced area with approximately 12,974 solar panels);
- Two (2) concrete electrical pads with transformers, and switchgears;
- 12-foot-wide gravel access road and turnaround;
- Seven (7)-foot Fixed-Knot, Woven Wire Agricultural fencing (encasing entire project area);
- Above-ground electrical wire conduits; and
- Underground electrical wire conduits unless authorized otherwise by AIMA guidelines.

DECOMMISSIONING ACTIVITIES

The Facility will be decommissioned by completing the following major steps:

- 1. Installation of soil erosion and sediment controls
- 2. Removal of modules, racking, and piles;
- 3. Removal of cabling, trays, and electrical equipment;
- 4. Removal of concrete pads, foundations, fence, and debris;
- 5. Removal of the gravel access road (if required by the landowner);
- 6. Site stabilization by placing soil and reseeding; and
- 7. Removal and Disposal or Recycling of materials
- 8. Demobilization and removal of soil erosion and sediment controls following final inspection and approval.

The procedures for decommissioning of the project will involve restoring soils and vegetation to agricultural productivity or pre-existing conditions.

<u>Schedule</u>

The decommissioning process is estimated to take approximately two (2) months but may change depending on weather and soil moisture conditions and is intended to occur outside of the winter season.

Decommissioning During Construction (Abandonment of Project)

If construction or operation activities cease prior to facility completion, with no expectation to restart for more than twelve (12) months, the project would be decommissioned as follows in this plan. Any installed components will be removed and managed, as per the following sections, and the site will be restored to a vegetated condition.

RPIL Solar 5, LLC Highway 20 Solar

Decommissioning After Ceasing Operation

Properly maintained PV panels have an expected lifespan of thirty-five (35) years. At this time or if for six (6) consecutive months, the facility owner has failed to pay the landowner amounts owed in accordance with an underlying agreement, it shall be considered a "cessation or abandonment of operations". Installed components will be removed and reused/recycled where possible, and the site restored in accordance with the activities discussed below. The proposed date of discontinued operations and plans for removal shall be provided by the owner or operator to the County by certified mail.

Should the project be considered abandoned, the County will have the right to access the property, pursuant to reasonable notice, in order to affect or complete decommissioning.

Offsite Impacts During Decommissioning

As with the project's construction, noise levels during the decommission work will increase. Proper steps will be followed to minimize the disturbance, such as using proper equipment for removing the support piles. Work hours are assumed to be eight (8) hours a day, during daylight. Also, as with the project's construction, road traffic in the area may increase temporarily due to crews and equipment movements. Further details of the on-site restoration are included in subsequent sections.

Dismantlement and Demolition

Decommissioning shall include removal of all solar electric systems, buildings, ballasts, cabling, electrical components, road(s), foundations, pilings, and any other associated facilities. This will include removal of all items identified in the decommissioning activities above.

A significant amount of the components of the PV system at the Facility will include recyclable or re-saleable components, including copper, aluminum, galvanized steel, and panels. Due to their resale monetary value, these components will be dismantled and disassembled rather than being demolished and disposed of.

Following coordination with the local utility company regarding timing and required procedures for disconnecting the Facility from the utility, all electrical connections to the system will be disconnected and all connections will be tested locally to confirm that no electric current is running through them before proceeding. All electrical connections to the panels will be disconnected at the panel and then removed from their framework by cutting or dismantling the connections to the supports. Then panels, inverters, transformers, meters, fans, lighting fixtures, and other electrical structures will be removed. Disposal of these materials at a landfill will be governed by federal, state, and local laws, including the Code of Illinois Regulations governing waste disposal at local area landfills, which may be amended from time to time. Any materials deemed to be hazardous at the time of disposal will be handled and disposed according to applicable laws and regulations.

The PV mounting system framework will be dismantled and recycled. The galvanized support piles will be completely removed and recycled.

RPIL Solar 5, LLC Highway 20 Solar

Finally, all associated structures will be demolished and removed from the site for recycling or disposal. This will include the site fence, gates, access road(s), equipment foundations, and underground cables, which will be removed or recycled.

Consultation with the landowner and the county will determine if the access roads should be left in place for their continued use. If the access road is deemed unnecessary, the contractor will remove the access roads and all non-adaptable parts of the project to a minimum depth of 60" as required by the AIMA and restore this area with native soils and seeding. All concrete associated with the Facility on-site will be broken and removed in its entirety, and clean concrete will be crushed and disposed of or recycled off-site. Final stabilization thresholds on the entire site shall be met prior to approval of site decommissioning. Underground conduits and raceways are to be removed. Above ground lines and poles that are not owned by the utility will be removed, along with associated equipment (isolation switches, fuses, metering) and holes will be filled with clean topsoil. Temporary sanitary facilities will be provided on-site for the workers conducting the decommissioning of the Facility.

Erosion and sediment control measures are required during the decommissioning process. These measures include construction access, silt fence, concrete washout stations, and land stabilization. The owner/operator will restore the project location to a vegetated condition consistent with pre-construction conditions.

Disposal or Recycle

During the decommissioning phase, a variety of excess materials can be salvaged. A significant amount of the materials used in a solar facility are reusable, including copper, aluminum, galvanized steel, and the PV panels. Due to their resale monetary value, these components will be dismantled and disassembled rather than being demolished and disposed. Any remaining materials will be removed and disposed of off-site at an appropriate facility. The project general contractor will maximize recycling and reuse and will work with manufacturers, local subcontractors and waste firms to segregate material to be recycled, reused and/or disposed of properly. Hazardous materials as outlined in CFR Part 261 are not anticipated to be encountered as a result of decommissioning activity.

RPIL Solar 5 LLC or its successors, will be responsible for arranging the collection or recycling of fence, racking piles, PV panels, panel tracker equipment, AC and DC wiring, inverters, and miscellaneous equipment for salvage value. In the event that Kane County must take over decommissioning activity from RPIL Solar 5 LLC, the County will have the right to transfer applicable commercial solar energy facility materials to salvage firms.

Gravel may be reused as general fill on site with landowner approval. Remaining gravel, geotextile fabric, concrete, and debris need to be separated and transported off-site by truck to the appropriate facilities for recycling and disposal in accordance with federal, state, and local waste management regulations. A final site walkthrough with the appropriate local authorities will be conducted to verify removal of debris and/or trash generated within the site during the

4

RPIL Solar 5, LLC Highway 20 Solar

decommissioning process and will include removal and proper disposal of any debris that may have been wind-blown to areas outside the immediate footprint of the facility being removed.

Removal of Landscape Materials and Site Stabilization:

The areas of the Facility that are disturbed (during decommissioning) will be subject to minor regrading (no imported soil is anticipated), to establish a uniform slope and stabilization, including application of a selected grass seed mix to surfaces disturbed (estimated to be 50% of the site) during the decommissioning process. The seed mix is expected to be a blend of various fescue and/or rye grass seeds. The actual seed blend will depend on factors including availability and time of year that planting would occur.

It is expected that soil and vegetation will be restored to pre-existing conditions. Details will be discussed with the property owner, Kane County, and the Kane-DuPage Soil and Water Conservation District. Planting trees, shrubs, and other woodsy vegetation (re-forestation) or other beautification are not expected to be required and are not included in the costs. It is assumed that major site grading activities are not proposed as part of the project. Imported fill will be provided, if necessary, to restore to original conditions. Only minor grading is anticipated with regards to site restoration (from construction, demolition, and traffic damage) and access drives removal. All site stabilization activities will be completed in accordance with regulatory requirements and the approved Storm Water Pollution Prevention Plan (SWPPP)NPDES Construction General Permit and the Watershed Development Permit.

PERMITTING REQUIREMENTS FOR DECOMMISSIONING

Approvals are currently required prior to initiation of ground-disturbing activity. This cost estimate assumes the same approvals are required when decommissioning occurs in the future. The permitting requirements listed below will be reviewed and might be subject to revisions based on local, state, and federal regulations at the time of decommissioning.

National Pollutant Discharge Elimination System (NPDES) Construction General Permit

U.S. Environmental Protection Agency - Ground disturbance of greater than 1 acre requires preparation of a Storm Water Pollution Prevention Plan, including erosion and sedimentation controls.

Kane County Stormwater Management Permit

Kane County Stormwater Management Commission (SMC) - Ground disturbance of greater than 5,000 square feet of soil requires preparation of a SWPPP and permit application.

Building Permit

A building permit is required to construct the facility. A building permit must also be obtained for any construction, alteration, repair, demolition, or change to the use or occupancy of a building.

RPIL Solar 5, LLC Highway 20 Solar

Permit Requirement Assumptions

No significant ground disturbance or grading associated with decommissioning, including temporary laydown areas, are required within areas subject to additional local, state, or federal permitting.

SOLAR DECOMMISSIONING ESTIMATE

The following items can be salvaged and recycled: fence material, racking piles, PV panels, miscellaneous tracker equipment, AC and DC wiring, combiner boxes, inverters, transformers, medium voltage equipment, electrical equipment posts, and customer owned utility poles.

The decommissioning cost estimate is based on 2023 Kane County prevailing labor rates equipment rates and credits for salvaging project material in 2023. The equipment rates have been estimated using publicly available data from the Federal Emergency Management Agency (FEMA) published Schedule of Equipment Rates, 2021. The salvage value rates have been estimated using publicly available data (e.g., http://www.scrapmonster.com), as well as industry provided actual salvage values and previous experience with similar projects.

The estimated costs utilize hourly and monthly rates listed below:

<u>2023 Wages</u>

- Labor at \$48.15/hr;
- Operating engineer at \$59.10/hr;
- Truck driver at \$41.61hr;
- Electrician at \$57.83/hr;
- Skid steer rental at \$2,350.00/month;
- Excavator rental at \$4,925.00/month; and
- Dump truck rental at \$52.96/hr

2023 Salvage Values

- Steel (e.g., fence, racking, posts) at \$0.15/lb.;
- PV panels at \$20/panel;
- Electrical components (e.g., combiner boxes, inverters, transformer) at \$0.28/lb.;
- DC wiring (copper) at \$1.50/lb.; and
- AC wiring (copper and aluminum) at \$1.31/lb.

RPIL Solar 5, LLC Highway 20 Solar

The estimated cost of construction activities associated with decommissioning using current wages is \$510,297. The material salvage value is \$340,461 for a net decommissioning cost of \$169,836. The detailed costs are attached.

The attached preliminary decommissioning cost estimate is based on the preliminary plans for permitting purposes dated May 4, 2023. Changes to the plans and construction details may affect the scope and costs of Facility decommissioning. The opinion of probable costs is based on experience in the design and construction of energy facilities and are subject to final engineering/construction.

If at any time in the future, the prevailing professionally accepted standards of economic feasibility of recycling and or environmental implications of hazardous waste changes to increase the costs associated with decommissioning, the cost estimate may need to be revised, and the bonds may need to be modified accordingly to cover said cost.

This opinion assumes a third-party contractor, experienced in the construction and decommissioning of photovoltaic facilities will lead the effort. The reported costs include labor materials, taxes, insurance, transport costs, equipment rental, contractor's overhead, and contractor's profit; the labor costs have been estimated using regional labor rates and labor efficiencies that have been published for the local area along with previous decommissioning plan estimates completed for other similar projects.

RPIL Solar 5, LLC, by its duly authorized representative's signature below, hereby acknowledges that it has reviewed this Decommissioning Plan, and approves of the same, and agrees to be bound by the terms and conditions contained therein. RPIL Solar 5, LLC also acknowledges that the terms of this Decommissioning Plan shall be binding upon themself as the applicant, as well as any of their successors-in-interest and assigns.

Authorized Representative:	
Authorized Representative: O NC	

Print Name:	Stephanie	Loucas

Title: Chief Development Officer

Date: June 15, 2023

Highway 20 Solar Decommissioning Cost Estimate

Preliminary Decommissioning Cost Estimate RPIL Solar 5, LLC Highway 20 Solar Facility

		Estimated	Сс	ost per Unit	Total Gross	Sa	alvage Value	Net Costs
Task	Unit	Quantity		2023	Cost 2023		2023	2023
Engineering & Permitting	LS	1	\$	11,250.00	\$ 11,250.00			\$ 11,250.00
Mobilization	LS	1	\$	35,117.20	\$ 35,117.20			\$ 35,117.20
Silt Fence	LF	5,000	\$	2.90	\$ 14,500.00			\$ 14,500.00
Access Road Removal & Restoration	SF	16,980	\$	3.60	\$ 61,128.00			\$ 61,128.00
Equipment Pad & Restoration	EA	2	\$	900.00	\$ 1,800.00			\$ 1,800.00
Seed Disturbed Areas (50% disturbed ar	AC	14	\$	992.00	\$ 13,888.00			\$ 13,888.00
Fence Removal	LF	5,000	\$	3.00	\$ 15,000.00	\$	(3,720.00)	\$ 11,280.00
Site Clean Up	AC	28	\$	270.00	\$ 7,560.00			\$ 7,560.00
Rack and Post Removal	EA	2,200	\$	90.00	\$ 198,000.00	\$	(82,500.00)	\$ 115,500.00
Remove Panels	EA	12,974	\$	3.60	\$ 46,706.40	\$	(246,506.00)	\$ (199,799.60)
AC Wiring-Direct Burial and Overhead	LF	17,100	\$	0.27	\$ 4,647.20	\$	(2,008.40)	\$ 2,638.80
DC Wire Removal	LF	49,000	\$	0.50	\$ 24,500.00	\$	(2,940.00)	\$ 21,560.00
Electrical Disconnect	EA	1	\$	240.00	\$ 240.00			\$ 240.00
Inverter	EA	40	\$	210.00	\$ 8,400.00	\$	(1,084.16)	\$ 7,315.84
Transformer	EA	2	\$	500.00	\$ 1,000.00	\$	(1,702.40)	\$ (702.40)
SUBTOTAL					\$ 443,736.80	\$	(340,460.96)	\$ 103,275.84
Other Costs								
Contractor Profit	%	8%			\$ 35,498.94			\$ 35,498.94
Contractor Overhead & Management	%	5%			\$ 22,186.84			\$ 22,186.84
Contractor Insurance	%	2%			\$ 8,874.74			\$ 8,874.74
SUBTOTAL					\$ 66,560.52			\$ 66,560.52
DECOMMISSIONING TOTAL					\$ 510,297.32			\$ 169,836.36

**Material, equipment and labor cost estimated utilizing FEMA 2021 schedule of equipment rates, and the Kane County, IL Prevailing Labor rates.

Kane County Prevailing Wage Rates posted on 4/3/2023

							Ove	rtime						
Trade Title	Rg	Туре	С	Base	Foreman	M-F	Sa	Su	Hol	H/W	Pension	Vac	Trng	Other Ins
ASBESTOS ABT-GEN	All	ALL		47.40	48.40	1.5	1.5	2.0	2.0	15.11	17.15	0.00	0.90	
ASBESTOS ABT-MEC	All	BLD		39.60	42.77	1.5	1.5	2.0	2.0	14.77	13.59	0.00	0.86	
BOILERMAKER	All	BLD		53.66	58.48	2.0	2.0	2.0	2.0	6.97	23.69	0.00	2.67	
BRICK MASON	All	BLD		49.81	54.79	1.5	1.5	2.0	2.0	12.10	21.56	0.00	1.10	
CARPENTER	All	ALL		52.01	54.01	1.5	1.5	2.0	2.0	11.79	25.27	1.00	0.80	
CEMENT MASON	All	ALL		49.70	51.70	2.0	1.5	2.0	2.0	11.65	26.65	0.00	0.55	
CERAMIC TILE FINISHER	All	BLD		44.18	44.18	1.5	1.5	2.0	2.0	12.25	14.77	0.00	1.00	
CERAMIC TILE LAYER	All	BLD		51.44	55.44	1.5	1.5	2.0	2.0	12.25	18.48	0.00	1.08	
COMMUNICATION TECHNICIAN	N	BLD		44.56	46.96	1.5	1.5	2.0	2.0	14.08	17.14	0.00	0.89	
COMMUNICATION TECHNICIAN	S	BLD		43.08	45.88	1.5	1.5	2.0	2.0	17.30	15.06	0.00	1.51	
ELECTRIC PWR EQMT OP	All	ALL		47.56	64.89	1.5	1.5	2.0	2.0	7.00	13.32	0.00	1.19	1.4
ELECTRIC PWR GRNDMAN	All	ALL		36.53	64.89	1.5	1.5	2.0	2.0	7.00	10.23	0.00	0.92	1.1
ELECTRIC PWR LINEMAN	All	ALL		57.17	64.89	1.5	1.5	2.0	2.0	7.00	16.01	0.00	1.43	1.7
ELECTRIC PWR TRK DRV	All	ALL		37.86	64.89	1.5	1.5	2.0	2.0	7.00	10.61	0.00	0.95	1.1
ELECTRICIAN	N	ALL		53.43	57.83	1.5	2.0	2.0	2.0	15.95	20.51	0.00	1.60	
ELECTRICIAN	S	BLD		51.84	56.09	1.5	1.5	2.0	2.0	18.05	18.52	0.00	1.81	
ELEVATOR CONSTRUCTOR	All	BLD		62.47	70.28	2.0	2.0	2.0	2.0	16.03	20.21	5.00	0.65	
FENCE ERECTOR	All	ALL		48.83	52.74	2.0	2.0	2.0	2.0	13.31	25.25	0.00	1.28	
GLAZIER	All	BLD		48.75	50.25	1.5	2.0	2.0	2.0	15.19	24.43	0.00	1.70	
HEAT/FROST INSULATOR	All	BLD		52.80	55.97	1.5	1.5	2.0	2.0	14.77	16.76	0.00	0.86	
IRON WORKER	All	ALL		48.83	52.74	2.0	2.0	2.0	2.0	13.31	25.25	0.00	1.28	
LABORER	All	ALL		47.40	48.15	1.5	1.5	2.0	2.0	15.11	17.15	0.00	0.90	
LATHER	All	ALL		52.01	54.01	1.5	1.5	2.0	2.0	11.79	25.27	1.00	0.80	
MACHINIST	All	BLD		53.18	57.18	1.5	1.5	2.0	2.0	9.93	8.95	1.85	1.47	
MARBLE FINISHER	All	ALL		38.00	51.41	1.5	1.5	2.0	2.0	12.10	19.60	0.00	0.60	
MARBLE SETTER	All	BLD		48.96	53.86	1.5	1.5	2.0	2.0	12.10	21.03	0.00	0.78	
MATERIAL TESTER I	All	ALL		37.40		1.5	1.5	2.0	2.0	15.11	17.15	0.00	0.90	
MATERIALS TESTER II	All	ALL		42.40		1.5	1.5	2.0	2.0	15.11	17.15	0.00	0.90	
MILLWRIGHT	All	ALL		52.01	54.01	1.5	1.5	2.0	2.0	11.79	25.27	1.00	0.80	
OPERATING ENGINEER	All	BLD	1	55.10	59.10	2.0	2.0	2.0	2.0	22.15	19.30	2.00	2.55	
OPERATING ENGINEER	All	BLD	2	53.80	59.10	2.0	2.0	2.0	2.0	22.15	19.30	2.00	2.55	

OPERATING ENGINEER	All	BLD	3	51.25	59.10	2.0	2.0	2.0	2.0	22.15	19.30	2.00	2.55	
OPERATING ENGINEER	All	BLD	4	49.50	59.10	2.0	2.0	2.0	2.0	22.15	19.30	2.00	2.55	
OPERATING ENGINEER	All	BLD	5	58.85	59.10	2.0	2.0	2.0	2.0	22.15	19.30	2.00	2.55	
OPERATING ENGINEER	All	BLD	6	56.10	59.10	2.0	2.0	2.0	2.0	22.15	19.30	2.00	2.55	
OPERATING ENGINEER	All	BLD	7	58.10	59.10	2.0	2.0	2.0	2.0	22.15	19.30	2.00	2.55	
OPERATING ENGINEER	All	FLT		41.00	41.00	1.5	1.5	2.0	2.0	20.90	17.85	2.00	2.15	
OPERATING ENGINEER	All	HWY	1	53.30	57.30	1.5	1.5	2.0	2.0	22.15	19.30	2.00	2.55	
OPERATING ENGINEER	All	HWY	2	52.75	57.30	1.5	1.5	2.0	2.0	22.15	19.30	2.00	2.55	
OPERATING ENGINEER	All	HWY	3	50.70	57.30	1.5	1.5	2.0	2.0	22.15	19.30	2.00	2.55	
OPERATING ENGINEER	All	HWY	4	49.30	57.30	1.5	1.5	2.0	2.0	22.15	19.30	2.00	2.55	
OPERATING ENGINEER	All	HWY	5	48.10	57.30	1.5	1.5	2.0	2.0	22.15	19.30	2.00	2.55	
OPERATING ENGINEER	All	HWY	6	56.30	57.30	1.5	1.5	2.0	2.0	22.15	19.30	2.00	2.55	
OPERATING ENGINEER	All	HWY	7	54.30	57.30	1.5	1.5	2.0	2.0	22.15	19.30	2.00	2.55	
ORNAMENTAL IRON WORKER	All	ALL		48.83	52.74	2.0	2.0	2.0	2.0	13.31	25.25	0.00	1.28	
PAINTER	All	ALL		50.30	52.30	1.5	1.5	1.5	2.0	19.73	4.15	0.00	1.55	
PAINTER - SIGNS	All	BLD		41.55	46.67	1.5	1.5	2.0	2.0	3.04	3.90	0.00	0.00	
PILEDRIVER	All	ALL		52.01	54.01	1.5	1.5	2.0	2.0	11.79	25.27	1.00	0.80	
PIPEFITTER	All	BLD		53.00	56.00	1.5	1.5	2.0	2.0	11.85	22.85	0.00	2.92	
PLASTERER	All	BLD		47.75	50.62	1.5	1.5	2.0	2.0	17.08	19.18	0.00	1.00	
PLUMBER	All	BLD		54.80	58.10	1.5	1.5	2.0	2.0	16.70	17.04	0.00	1.58	
ROOFER	All	BLD		48.00	53.00	1.5	1.5	2.0	2.0	11.83	15.26	0.00	0.99	
SHEETMETAL WORKER	All	BLD		53.33	56.00	1.5	1.5	2.0	2.0	11.85	19.43	0.00	1.59	2.54
SPRINKLER FITTER	All	BLD		54.55	57.30	1.5	1.5	2.0	2.0	14.20	18.70	0.00	0.75	
STEEL ERECTOR	All	ALL		48.83	52.74	2.0	2.0	2.0	2.0	13.31	25.25	0.00	1.28	
STONE MASON	All	BLD		49.81	54.79	1.5	1.5	2.0	2.0	12.10	21.56	0.00	1.10	
TERRAZZO FINISHER	All	BLD		45.57	45.57	1.5	1.5	2.0	2.0	12.25	17.14	0.00	1.03	
TERRAZZO MECHANIC	All	BLD		49.41	52.91	1.5	1.5	2.0	2.0	12.25	18.60	0.00	1.07	
TRAFFIC SAFETY WORKER I	All	HWY		39.30	40.90	1.5	1.5	2.0	2.0	9.65	9.10	0.00	0.10	
TRAFFIC SAFETY WORKER II	ALL	HWY		40.30	41.90	1.5	1.5	2.0	2.0	9.65	9.10	0.00	0.10	
TRUCK DRIVER	All	ALL	1	41.06	41.61	1.5	1.5	2.0	2.0	10.83	14.15	0.00	0.15	
TRUCK DRIVER	All	ALL	2	41.21	41.61	1.5	1.5	2.0	2.0	10.83	14.15	0.00	0.15	
TRUCK DRIVER	All	ALL	3	41.41	41.61	1.5	1.5	2.0	2.0	10.83	14.15	0.00	0.15	
TRUCK DRIVER	All	ALL	4	41.61	41.61	1.5	1.5	2.0	2.0	10.83	14.15	0.00	0.15	
TUCKPOINTER	All	BLD		49.53	50.53	1.5	1.5	2.0	2.0	9.04	21.06	0.00	1.07	

<u>Legend</u>

Rg Region Type Trade Type - All,Highway,Building,Floating,Oil & Chip,Rivers C Class Base Base Wage Rate OT M-F Unless otherwise noted, OT pay is required for any hour greater than 8 worked each day, Mon through Fri. The number listed is the multiple of the base wage. OT Sa Overtime pay required for every hour worked on Saturdays OT Su Overtime pay required for every hour worked on Sundays OT Hol Overtime pay required for every hour worked on Holidays H/W Health/Welfare benefit Vac Vacation Trng Training Other Ins Employer hourly cost for any other type(s) of insurance provided for benefit of worker.

Explanations KANE COUNTY

ELECTRICIANS AND COMMUNICATIONS TECHNICIAN (NORTH) - Townships of Burlington, Campton, Dundee, Elgin, Hampshire, Plato, Rutland, St. Charles (except the West half of Sec. 26, all of Secs. 27, 33, and 34, South half of Sec. 28, West half of Sec. 35), Virgil and Valley View CCC and Elgin Mental Health Center.

The following list is considered as those days for which holiday rates of wages for work performed apply: New Years Day, Memorial Day, Fourth of July, Labor Day, Thanksgiving Day, Christmas Day and Veterans Day in some classifications/counties. Generally, any of these holidays which fall on a Sunday is celebrated on the following Monday. This then makes work performed on that Monday payable at the appropriate overtime rate for holiday pay. Common practice in a given local may alter certain days of celebration. If in doubt, please check with IDOL.

EXPLANATION OF CLASSES

ASBESTOS - GENERAL - removal of asbestos material/mold and hazardous materials from any place in a building, including mechanical systems where those mechanical systems are to be removed. This includes the removal of asbestos materials/mold and hazardous materials from ductwork or pipes in a building when the building is to be demolished at the time or at some close future date.

ASBESTOS - MECHANICAL - removal of asbestos material from mechanical systems, such as pipes, ducts, and boilers, where the mechanical systems are to remain.

CERAMIC TILE FINISHER

The grouting, cleaning, and polishing of all classes of tile, whether for interior or exterior purposes, all burned, glazed or unglazed products; all composition materials, granite tiles, warning detectable tiles, cement tiles, epoxy composite materials, pavers, glass, mosaics, fiberglass, and all substitute materials, for tile made in tile-like units; all mixtures in tile like form of cement, metals, and other materials that are for and intended for use as a finished floor surface, stair treads, promenade roofs, walks, walls, ceilings, swimming pools, and all other places where tile is to form a finished interior or exterior. The mixing of all setting mortars including but not limited to thin-set mortars, epoxies, wall mud, and any other sand and cement mixtures or adhesives when used in the preparation, installation, repair, or maintenance of tile and/or similar materials. The handling and unloading of all sand, cement, lime, tile, fixtures, equipment, adhesives, or any other materials to be used in the preparation, installation, repair, or maintenance of tile and/or similar materials. Ceramic Tile Finishers shall fill all joints and voids regardless of method on all tile work, particularly and especially after installation of said tile work. Application of any and all protective coverings to all types of tile installations including, but not be limited to, all soap compounds, paper products, tapes, and all polyethylene coverings,

plywood, masonite, cardboard, and any new type of products that may be used to protect tile installations, Blastrac equipment, and all floor scarifying equipment used in preparing floors to receive tile. The clean up and removal of all waste and materials. All demolition of existing tile floors and walls to be re-tiled.

COMMUNICATIONS TECHNICIAN

Construction, installation, maintenance and removal of telecommunication facilities (voice, sound, data and video), telephone, security systems, fire alarm systems that are a component of a multiplex system and share a common cable, and data inside wire, interconnect, terminal equipment, central offices, PABX and equipment, micro waves, V-SAT, bypass, CATV, WAN (wide area network), LAN (local area networks), and ISDN (integrated system digital network), pulling of wire in raceways, but not the installation of raceways.

MARBLE FINISHER

Loading and unloading trucks, distribution of all materials (all stone, sand, etc.), stocking of floors with material, performing all rigging for heavy work, the handling of all material that may be needed for the installation of such materials, building of scaffolding, polishing if needed, patching, waxing of material if damaged, pointing up, caulking, grouting and cleaning of marble, holding water on diamond or Carborundum blade or saw for setters cutting, use of tub saw or any other saw needed for preparation of material, drilling of holes for wires that anchor material set by setters, mixing up of molding plaster for installation of material, mixing up of sand to cement for the installation of material and such other work as may be required in helping a Marble Setter in the handling of all material in the erection or installation of interior marble, slate, travertine, art marble, serpentine, alberene stone, blue stone, granite and other stones (meaning as to stone any foreign or domestic materials as are specified and used in building interiors and exteriors and customarily known as stone in the trade), carrara, sanionyx, vitrolite and similar opaque glass and the laying of all marble tile, terrazzo tile, slate tile and precast tile, steps, risers treads, base, or any other materials that may be used as substitutes for any of the aforementioned materials and which are used on interior and exterior which are installed in a similar manner.

MATERIAL TESTER I: Hand coring and drilling for testing of materials; field inspection of uncured concrete and asphalt.

MATERIAL TESTER II: Field inspection of welds, structural steel, fireproofing, masonry, soil, facade, reinforcing steel, formwork, cured concrete, and concrete and asphalt batch plants; adjusting proportions of bituminous mixtures.

OPERATING ENGINEER - BUILDING

Class 1. Asphalt Plant; Asphalt Spreader; Autograde; Backhoes with Caisson Attachment; Batch Plant; Benoto (requires Two Engineers); Boiler and Throttle Valve; Caisson Rigs; Central Redi-Mix Plant; Combination Back Hoe Front End-loader Machine; Compressor and Throttle Valve; Concrete Breaker (Truck Mounted); Concrete Conveyor; Concrete Conveyor (Truck Mounted); Concrete Paver Over 27E cu. ft; Concrete Paver 27E cu. ft. and Under: Concrete Placer; Concrete Placing Boom; Concrete Pump (Truck Mounted); Concrete Tower; Cranes, All; Cranes, Hammerhead; Cranes, (GCI and similar Type); Creter Crane; Spider Crane; Crusher, Stone, etc.; Derricks, All; Derricks, Traveling; Formless Curb and Gutter Machine; Grader, Elevating; Grouting Machines; Heavy Duty Self-Propelled Transporter or Prime Mover; Highlift Shovels or Front Endloader 2-1/4 yd. and over; Hoists, Elevators, outside type rack and pinion and similar machines; Hoists, One, Two and Three Drum; Hoists, Two Tugger One Floor; Hydraulic Backhoes; Hydraulic Boom Trucks; Hydro Vac (and similar equipment); Locomotives, All; Motor Patrol; Lubrication Technician; Manipulators; Pile Drivers and Skid Rig; Post Hole Digger; Pre-Stress Machine; Pump Cretes Dual Ram; Pump Cretes: Squeeze Cretes-Screw Type Pumps; Gypsum Bulker and Pump; Raised and Blind Hole Drill; Roto Mill Grinder; Scoops - Tractor Drawn; Slip-Form Paver; Straddle Buggies; Operation of Tie Back Machine; Tournapull; Tractor with Boom and Side Boom; Trenching Machines.

Class 2. Boilers; Broom, All Power Propelled; Bulldozers; Concrete Mixer (Two Bag and Over); Conveyor, Portable; Forklift Trucks; Highlift Shovels or Front Endloaders under 2-1/4 yd.; Hoists, Automatic; Hoists, Inside Elevators; Hoists, Sewer Dragging Machine;

Hoists, Tugger Single Drum; Laser Screed; Rock Drill (Self-Propelled); Rock Drill (Truck Mounted); Rollers, All; Steam Generators; Tractors, All; Tractor Drawn Vibratory Roller; Winch Trucks with "A" Frame.

Class 3. Air Compressor; Combination Small Equipment Operator; Generators; Heaters, Mechanical; Hoists, Inside Elevators (remodeling or renovation work); Hydraulic Power Units (Pile Driving, Extracting, and Drilling); Pumps, over 3" (1 to 3 not to exceed a total of 300 ft.); Low Boys; Pumps, Well Points; Welding Machines (2 through 5); Winches, 4 Small Electric Drill Winches.

Class 4. Bobcats and/or other Skid Steer Loaders; Oilers; and Brick Forklift.

Class 5. Assistant Craft Foreman.

Class 6. Gradall.

Class 7. Mechanics; Welders.

OPERATING ENGINEERS - HIGHWAY CONSTRUCTION

Class 1. Asphalt Plant; Asphalt Heater and Planer Combination; Asphalt Heater Scarfire; Asphalt Spreader; Autograder/GOMACO or other similar type machines: ABG Paver; Backhoes with Caisson Attachment; Ballast Regulator; Belt Loader; Caisson Rigs; Car Dumper; Central Redi-Mix Plant; Combination Backhoe Front Endloader Machine, (1 cu. yd. Backhoe Bucket or over or with attachments); Concrete Breaker (Truck Mounted); Concrete Conveyor; Concrete Paver over 27E cu. ft.; Concrete Placer; Concrete Tube Float; Cranes, all attachments; Cranes, Tower Cranes of all types: Creter Crane: Spider Crane; Crusher, Stone, etc.; Derricks, All; Derrick Boats; Derricks, Traveling; Dredges; Elevators, Outside type Rack & Pinion and Similar Machines; Formless Curb and Gutter Machine; Grader, Elevating; Grader, Motor Grader, Motor Patrol, Auto Patrol, Form Grader, Pull Grader, Subgrader; Guard Rail Post Driver Truck Mounted; Hoists, One, Two and Three Drum; Heavy Duty Self-Propelled Transporter or Prime Mover; Hydraulic Backhoes; Backhoes with shear attachments up to 40' of boom reach; Lubrication Technician; Manipulators; Mucking Machine; Pile Drivers and Skid Rig; Pre-Stress Machine; Pump Cretes Dual Ram; Rock Drill - Crawler or Skid Rig; Rock Drill - Truck Mounted; Rock/Track Tamper; Roto Mill Grinder; Slip-Form Paver; Snow Melters; Soil Test Drill Rig (Truck Mounted); Straddle Buggies; Hydraulic Telescoping Form (Tunnel); Operation of Tieback Machine; Tractor Drawn Belt Loader; Tractor Drawn Belt Loader (with attached pusher - two engineers); Tractor with Boom; Tractaire with Attachments; Traffic Barrier Transfer Machine; Trenching; Truck Mounted Concrete Pump with Boom; Raised or Blind Hole Drills (Tunnel Shaft); Underground Boring and/or Mining Machines 5 ft. in diameter and over tunnel, etc; Underground Boring and/or Mining Machines under 5 ft. in diameter; Wheel Excavator; Widener (APSCO).

Class 2. Batch Plant; Bituminous Mixer; Boiler and Throttle Valve; Bulldozers; Car Loader Trailing Conveyors; Combination Backhoe Front Endloader Machine (Less than 1 cu. yd. Backhoe Bucket or over or with attachments); Compressor and Throttle Valve; Compressor, Common Receiver (3); Concrete Breaker or Hydro Hammer; Concrete Grinding Machine; Concrete Mixer or Paver 7S Series to and including 27 cu. ft.; Concrete Spreader; Concrete Curing Machine, Burlap Machine, Belting Machine and Sealing Machine; Concrete Wheel Saw; Conveyor Muck Cars (Haglund or Similar Type); Drills, All; Finishing Machine - Concrete; Highlift Shovels or Front Endloader; Hoist - Sewer Dragging Machine; Hydraulic Boom Trucks (All Attachments); Hydro-Blaster; Hydro Excavating (excluding hose work); Laser Screed; All Locomotives, Dinky; Off-Road Hauling Units (including articulating) Non Self-Loading Ejection Dump; Pump Cretes: Squeeze Cretes - Screw Type Pumps, Gypsum Bulker and Pump; Roller, Asphalt; Rotary Snow Plows; Rototiller, Seaman, etc., self-propelled; Self-Propelled Compactor; Spreader - Chip - Stone, etc.; Scraper - Single/Twin Engine/Push and Pull; Scraper - Prime Mover in Tandem (Regardless of Size); Tractors pulling attachments, Sheeps Foot, Disc, Compactor, etc.; Tug Boats.

Class 3. Boilers; Brooms, All Power Propelled; Cement Supply Tender; Compressor, Common Receiver (2); Concrete Mixer (Two Bag and Over); Conveyor, Portable; Farm-Type Tractors Used for Mowing, Seeding, etc.; Forklift Trucks; Grouting Machine; Hoists, Automatic; Hoists, All Elevators; Hoists, Tugger Single Drum; Jeep Diggers; Low Boys; Pipe Jacking Machines; Post-Hole Digger; Power Saw, Concrete Power Driven; Pug Mills; Rollers, other than Asphalt; Seed and Straw Blower; Steam Generators; Stump Machine; Winch Trucks with "A" Frame; Work Boats; Tamper-Form-Motor Driven.

Class 4. Air Compressor; Combination - Small Equipment Operator; Directional Boring Machine; Generators; Heaters, Mechanical; Hydraulic Power Unit (Pile Driving, Extracting, or Drilling); Light Plants, All (1 through 5); Pumps, over 3" (1 to 3 not to exceed a total of 300 ft.); Pumps, Well Points; Vacuum Trucks (excluding hose work); Welding Machines (2 through 5); Winches, 4 Small Electric Drill Winches.

Class 5. SkidSteer Loader (all); Brick Forklifts; Oilers.

Class 6. Field Mechanics and Field Welders

Class 7. Dowell Machine with Air Compressor; Gradall and machines of like nature.

OPERATING ENGINEERS - FLOATING

Diver. Diver Wet Tender, Diver Tender, ROV Pilot, ROV Tender

TRAFFIC SAFETY Worker I

Traffic Safety Worker I - work associated with the delivery, installation, pick-up and servicing of safety devices during periods of roadway construction, including such work as set-up and maintenance of barricades, barrier wall reflectors, drums, cones, delineators, signs, crash attenuators, glare screen and other such items, and the layout and application or removal of conflicting and/or temporary roadway markings utilized to control traffic in construction zones, as well as flagging for these operations.

TRAFFIC SAFETY WORKER II

Work associated with the installation and removal of permanent pavement markings and/or pavement markers including both installations performed by hand and installations performed by truck.

TRUCK DRIVER - BUILDING, HEAVY AND HIGHWAY CONSTRUCTION Class 1. Two or three Axle Trucks. A-frame Truck when used for transportation purposes; Air Compressors and Welding Machines, including those pulled by cars, pick-up trucks and tractors; Ambulances; Batch Gate Lockers; Batch Hopperman; Car and Truck Washers; Carry-alls; Fork Lifts and Hoisters; Helpers; Mechanics Helpers and Greasers; Oil Distributors 2-man operation; Pavement Breakers; Pole Trailer, up to 40 feet; Power Mower Tractors; Self-propelled Chip Spreader; Skipman; Slurry Trucks, 2-man operation; Slurry Truck Conveyor Operation, 2 or 3 man; Teamsters; Unskilled Dumpman; and Truck Drivers hauling warning lights, barricades, and portable toilets on the job site.

Class 2. Four axle trucks; Dump Crets and Adgetors under 7 yards; Dumpsters, Track Trucks, Euclids, Hug Bottom Dump Turnapulls or Turnatrailers when pulling other than self-loading equipment or similar equipment under 16 cubic yards; Mixer Trucks under 7 yards; Ready-mix Plant Hopper Operator, and Winch Trucks, 2 Axles.

Class 3. Five axle trucks; Dump Crets and Adgetors 7 yards and over; Dumpsters, Track Trucks, Euclids, Hug Bottom Dump Turnatrailers or turnapulls when pulling other than self-loading equipment or similar equipment over 16 cubic yards; Explosives and/or Fission Material Trucks; Mixer Trucks 7 yards or over; Mobile Cranes while in transit; Oil Distributors, 1-man operation; Pole Trailer, over 40 feet; Pole and Expandable Trailers hauling material over 50 feet long; Slurry trucks, 1-man operation; Winch trucks, 3 axles or more; Mechanic--Truck Welder and Truck Painter.

Class 4. Six axle trucks; Dual-purpose vehicles, such as mounted crane trucks with hoist and accessories; Foreman; Master Mechanic; Self-loading equipment like P.B. and trucks with scoops on the front.

TERRAZZO FINISHER

The handling of sand, cement, marble chips, and all other materials that may be used by the Mosaic Terrazzo Mechanic, and the

mixing, grinding, grouting, cleaning and sealing of all Marble, Mosaic, and Terrazzo work, floors, base, stairs, and wainscoting by hand or machine, and in addition, assisting and aiding Marble, Masonic, and Terrazzo Mechanics.

Other Classifications of Work:

For definitions of classifications not otherwise set out, the Department generally has on file such definitions which are available. If a task to be performed is not subject to one of the classifications of pay set out, the Department will upon being contacted state which neighboring county has such a classification and provide such rate, such rate being deemed to exist by reference in this document. If no neighboring county rate applies to the task, the Department shall undertake a special determination, such special determination being then deemed to have existed under this determination. If a project requires these, or any classification not listed, please contact IDOL at 217-782-1710 for wage rates or clarifications.

LANDSCAPING

Landscaping work falls under the existing classifications for laborer, operating engineer and truck driver. The work performed by landscape plantsman and landscape laborer is covered by the existing classification of laborer. The work performed by landscape operators (regardless of equipment used or its size) is covered by the classifications of operating engineer. The work performed by landscape truck drivers (regardless of size of truck driven) is covered by the classifications of truck driver.

MATERIAL TESTER & MATERIAL TESTER/INSPECTOR | AND ||

Notwithstanding the difference in the classification title, the classification entitled "Material Tester I" involves the same job duties as the classification entitled "Material Tester/Inspector I". Likewise, the classification entitled "Material Tester II" involves the same job duties as the classification entitled "Material Tester/Inspector II".

	А	В	С	D	E	F	G	Н
1	Cost Code	Equipment	Specifications	Capacity or Size	HP	Notes	Unit	2021 Rate
2	8010	Air Compressor	Air Delivery	41 CFM	to 10	Hoses included.	hour	\$1.31
3	8011	Air Compressor	Air Delivery	103 CFM	to 30	Hoses included.	hour	\$9.67
4	8012	Air Compressor	Air Delivery	130 CFM	to 50	Hoses included.	hour	\$11.50
5	8013	Air Compressor	Air Delivery	175 CFM	to 90	Hoses included.	hour	\$18.65
6	8014	Air Compressor	Air Delivery	400 CFM	to 145	Hoses included.	hour	\$36.88
7	8015	Air Compressor	Air Delivery	575 CFM	to 230	Hoses included.	hour	\$56.30
8	8016	Air Compressor	Air Delivery	1100 CFM	to 355	Hoses included.	hour	\$100.54
9	8017	Air Compressor	Air Delivery	1600 CFM	to 500	Hoses included.	hour	\$103.33
10	8040	Ambulance			to 150		hour	\$28.48
11	8041	Ambulance			to 210		hour	\$41.76
12	8050	Board, Arrow			to 8	Trailer Mounted.	hour	\$5.65
		Gasoline Powered						
13	8051	Message Board,			to 5	Trailer Mounted.	hour	\$11.39
		Solar Powered	SMC 5000 Mast-	Mini Matrix Board,				
14	8052	Arrow/Message Board	Mini	Smaller 3' x 6' Display			hour	\$4.00
		Solar Powered Message		Full Matrix Board,				
15	8053	Board	PCMS-1500	Display			hour	\$5.10
16	8060	Auger, Portable	Hole Diameter	16 ln	to 6		hour	\$1.95
17	8061	Auger, Portable	Hole Diameter	18 ln	to 13		hour	\$4.34
			Max. Auger			Includes digger, boom &		
18	8062	Auger, Tractor Mounted	Diameter	36 In	to 13	mounting hardware	hour	\$3.29
						Includes digger, boom &		
						mounting hardware and		
19	8063	Auger, Truck Mounted	Max. Auger Size	24 In	to 100	Tractor rate.	hour	\$35.68
		Hydraulic Sign Post	Greenlee; HPD-	W/ 13 Hp power unit,				
20	8064	Driver	HV-U	2ksi preasure	13	w/Double Hose Assembly	hour	\$5.69
		Hydraulic Sign Post						
21	8064-1	Driver	Drophammar (D)	8" x 8" x 10"'	to 100	Guard Rail Post	hour	\$35.27
			Horizontal					
			Directional Boring					
22	8065	Auger	Machine	250 X 100	300	DD-140B YR-2003	hour	\$241.89

	А	В	С	D	E	F	G	Н
1	Cost Code	Equipment	Specifications	Capacity or Size	HP	Notes	Unit	2021 Rate
			Horizontal					
			Directional Boring					
23	8066	Auger	Machine	50 X 100	24	Average to 7,000 lbs	hour	\$34.30
		-	Auger, Directional					
24	8067	Boring Machine	Boring Machine	7,000 - 10,000 lbs	45	JT920L (2013)	hour	\$43.80
			Vermeer					
		Directional Boring	D24X40A (disc.	Spindle Torque 4000				
25	8067-1	Machine	2001)	ft/lb	125		hour	\$93.30
				Single Spindle Rotary				
26	8068	Bush Hog	326	Cutters			hour	\$20.90
			-	Lift, Pull, Semi-Mount				
27	8068-1	Bush Hog	3210	& Offset Model			hour	\$29.14
			Bush Hog - Model	- ,				
28		Bush Hog	2815	Cutters			hour	\$43.77
29		Automobile			to 130	Transporting people.	mile	\$0.56
30		Automobile			to 130	Transporting cargo.	hour	\$12.60
31	8072	Automobile, Police			to 250	Patrolling.	mile	\$0.56
						Stationary with engine		
32		Automobile, Police			to 250	running.	hour	\$16.27
33		Automobile, Police	Ford Explorer		210		hour	\$18.75
34		Motorcycle, Police					mile	\$0.52
		Automibile - Chevy						400 77
35		Trailblazer	6 or 8 cl		285 to 300		hour	\$20.77
		Automobile - Ford	Fire Command					
36		Expedition	Center	EcoBoost V-6	360	2015 Model	hour	\$19.97
_			Search and	Military Surplus		Qualified foe operational		4.5.5.5.5
37	8078	Vehicle	Rescue	Vehicle	375-450	rate on	hour	\$52.53
			Multi-Theater					
			(Military			Qualified foe operational		
38		MRAP C-MTV	Surplus)Vehicle	gvwr 55000 Lbs	to 350	rate on	hour	\$49.03
39	8079-1	MRPA with 6-Tires			300		hour	\$53.00

	А	В	С	D	E	F	G	Н
1	Cost Code	Equipment	Specifications	Capacity or Size	HP	Notes	Unit	2021 Rate
			Police Armored					
		MRAP- BAE CAIMAN II	Rescue/SWAT					
40	8079-2	Model	Team Vehicle		320		hour	\$54.00
			Engine 110cc, 4-					
41	8080	All Terrain Vehicle (ATV)	Wheel; 20" tyre		6.5-7.5		hour	\$8.35
			Engine 125cc, 4-					
42	8081	All Terrain Vehicle (ATV)	· ·		7.6-8.6		hour	\$8.79
			Engine 150cc, 4-					
43	8082	All Terrain Vehicle (ATV)	Wheel; 22" tyre		9.0-10.0		hour	\$8.80
			Engine 200cc, 4-					
44	8083	All Terrain Vehicle (ATV)	Wheel; 24" tyre		12-14.0		hour	\$9.36
			Engine 250cc, 4-					
45	8084	All Terrain Vehicle (ATV)	Wheel; 24" tyre		15-17		hour	\$9.95
			Engine 300cc, 4-					
46	8085	All Terrain Vehicle (ATV)	Wheel; 24" tyre		18-20		hour	\$10.81
			Engine 400cc. 4-					
47	8086	All Terrain Vehicle (ATV)	Wheel; 25" tyre		26-28		hour	\$12.37
			Engine 450cc, 4-					
48	8087	All Terrain Vehicle (ATV)	Wheel; 25" tyre		26-28		hour	\$13.25
			Engine 650cc, 4-					
49	8088	All Terrain Vehicle (ATV)	Wheel; 25" tyre		38-40		hour	\$14.05
			Engine 750cc, 4-					
50	8089	All Terrain Vehicle (ATV)	Wheel; 25" tyre		44-46		hour	\$15.00
			Polaris-Ranger					
51	8090	All Terrain Vehicle	900				hour	\$26.30
			Honda Pioneer-					
52	8091	All Terrain Vehicle	1000-3				hour	\$27.00
53	8110	Barge, Deck	Size	50'x35'x7.25'	0	Push by Tug-Boat	hour	\$52.73
54	8111	Barge, Deck	Size	50'x35'x9'	0	Push by Tug-Boat	hour	\$56.53
55	8112	Barge, Deck	Size	120'x45'x10'	0	Push by Tug-Boat	hour	\$109.11
56	8113	Barge, Deck	Size	160'x45'x11''	0	Push by Tug-Boat	hour	\$132.11
57	8120	Boat, Tow	Size	55'x20'x5'	to 870	Steel.	hour	\$335.23
58	8121	Boat, Tow	Size	60'x21'x5'	to 1050	Steel.	hour	\$377.40

	А	В	С	D	E	F	G	Н
1	Cost Code	Equipment	Specifications	Capacity or Size	HP	Notes	Unit	2021 Rate
59	8122	Boat, Tow	Size	70'x30'x7.5'	to 1350	Steel.	hour	\$597.02
60	8123	Boat, Tow	Size	120'x34'x8'	to 2000	Steel.	hour	\$1,129.95
			815AGIS Airboat					
61	8124	Airboat	w/spray unit	15'x8'	400		hour	\$33.16
			815AGIS Airboat					
62	8125	Airboat	w/spray unit	15'x8'	425		hour	\$33.52
63	8126	Swamp Buggy	Conquest		360		hour	\$41.93
64	8130	Boat, Row			0	Heavy duty.	hour	\$1.49
65	8131	Boat, Runabout	Size	13'x5'	to 50	Outboard.	hour	\$12.73
						Inboard with 360 degree		
66	8132	Boat, Tender	Size	14'x7'	to 100	drive.	hour	\$15.53
67	8133	Boat, Push	Size	45'x21'x6'	to 435	Flat hull.	hour	\$227.27
68	8134	Boat, Push	Size	54'x21'x6'	to 525	Flat hull.	hour	\$282.11
69	8135	Boat, Push	Size	58'x24'x7.5'	to 705	Flat hull.	hour	\$340.76
70	8136	Boat, Push	Size	64'x25'x8'	to 870	Flat hull.	hour	\$375.08
71	8140	Boat, Tug	Length	16 Ft	to 100		hour	\$45.23
72	8141	Boat, Tug	Length	18 Ft	to 175		hour	\$65.79
73	8142	Boat, Tug	Length	26 Ft	to 250		hour	\$82.83
74	8143	Boat, Tug	Length	40 Ft	to 380		hour	\$207.27
75	8144	Boat, Tug	Length	51 Ft	to 700		hour	\$285.33
76	8145	Jet Ski	3-seater				hour	\$28.09
77	8146	Jet Ski					hour	\$8.72
		Boat, Inflatable Rescue						
78	8147	Raft	Zodiac		0		hour	\$1.15
79	8148	Boat, Runabout	1544 lbs	11 passenger capacity	190-250		hour	\$66.43
			2000 Johnson					
			Outboard Motor					
			w 15"					
80	8149	Boat, Removable Engine	shaft		15		hour	\$1.60
81	8150	Pavement Brooms	Self Propelled		to 37		hour	\$24.08
82	8151	Broom, Pavement	Broom Length	96 In	to 100		hour	\$31.17

	А	В	С	D	E	F	G	Н
1	Cost Code	Equipment	Specifications	Capacity or Size	HP	Notes	Unit	2021 Rate
						Add Prime Mover cost for		
		Broom, Pavement,				total		
83	8153	Mounted	Broom Length	72 ln	to 18	rate	hour	\$5.76
						Add Prime Mover cost for		
						total		
84		Broom, Pavement, Pull	Broom Length	84 In	to 20	rate	hour	\$15.32
85		Broom, Pavement	Broom Length	72 In	to 35		hour	\$24.57
86		Sweeper, Pavement			to 110		hour	\$85.20
87		Sweeper, Pavement			to 230		hour	\$100.11
88	8180				to 150		hour	\$21.90
89	8181				to 210		hour	\$26.18
90	8182	Bus			to 300		hour	\$40.21
			Gasoline powered					
91	8183	Blower	Toro Pro Force		27		hour	\$15.62
			2015 Adapco					
92		Mosquito Sprayer	Guardian 95 ES	15-gal; 350 lbs			hour	\$19.09
93		Back-Pack Blower			to 4.4		hour	\$1.55
94	8185	Walk-Behind Blower			13		hour	\$6.93
95	8187	Chainsaw	Bar Length = 20 in	3.0 cu in	3		hour	\$1.94
96	8188	Chainsaw	Bar Length = 20 in	5.0 cu in	6		hour	\$3.39
97	8189	Chainsaw	Bar Length = 20 in	6.0 cu in	7		hour	\$3.60
98	8190	Chain Saw	Bar Length = 16 in	2.5 cu in	2		hour	\$2.07
							.	
99	8191	Chain Saw	Bar Length = 25 in	7.5 cu in	8		hour	\$4.54
100		Chain Saw	Bar Length = 18 in	4.0 cu in	3.2		hour	\$2.13
101		Skidder	model 748 E		to 173		hour	\$115.15
102	8194	Skidder	model 648 G11		to 177		hour	\$138.73

	А	В	С	D	E	F	G	Н
1	Cost Code	Equipment	Specifications	Capacity or Size	HP	Notes	Unit	2021 Rate
103	8195	Cutter, Brush	Cutter Size	8 ft	to 150		hour	\$124.22
104	8196	Cutter, Brush	Cutter Size	8 ft	to 190		hour	\$137.38
105	8197	Cutter, Brush	Cutter Size	10 ft	to 245		hour	\$144.78
			Cutter, Brush -					
			247 hp, 1997					
			Model					
106		Bruncher Cutter	511 Feller		to 247		hour	\$198.34
107	8199	Log Trailer	40 ft		0		hour	\$10.29
108	8200	Chipper, Brush	Chipping Capacity	6 In	to 35	Trailer Mounted.	hour	\$9.10
109	8201	Chipper, Brush	Chipping Capacity	9 In	to 65	Trailer Mounted.	hour	\$17.30
						- ·· · · ·		400.00
110	8202	Chipper, Brush	Chipping Capacity	12 In	to 100	Trailer Mounted.	hour	\$32.26
111	0102	Chinner Druch	Chinning Conneity	15 lm	to 125	Trailer Mounted.	hour	624.17
111	8203	Chipper, Brush	Chipping Capacity	12 10	10 125		hour	\$34.17
112	8204	Chipper, Brush	Chipping Capacity	18 In	to 200	Trailer Mounted.	hour	\$51.12
	0101	Loader - Tractor -	model Barko 595	20				<i>\\</i>
113	8208	Knuckleboom	ML		to 173		hour	\$172.12
			model 210 w/					T = 1 = 1 = 1
			Buck Saw 50 inch					
114	8209	Loader - Wheel	Bar		to 240		hour	\$95.11
		Clamshell & Dragline,				Bucket not included in		
115	8210	Crawler		149,999 lbs	to 235	rate.	hour	\$131.38
		Clamshell & Dragline,				Bucket not included in		
116	8211	Crawler		250,000 lbs	to 520	rate.	hour	\$174.33
		Clamshell & Dragline,				Bucket not included in		
117	8212	Truck			to 240	rate.	hour	\$142.26
			2-ton pavement					
118	8217	Compactor	roller	to 76" wide	40		hour	\$27.29
119	8218	BOMAG Compactor	BW100AD-3		33		Hour	\$29.33

	А	В	С	D	E	F	G	Н
1	Cost Code	Equipment	Specifications	Capacity or Size	HP	Notes	Unit	2021 Rate
			Single Drum					
		Compactor -2-Ton	Vibratoty					
120	8219	Pavement Roller	Compactor	to 2.9 Ton	28		hour	\$29.12
121	8220	Compactor			to 10		hour	\$15.32
		Compactor, Towed,						
122	8221	Vibratory Drum			to 45	Plus tow Truck	hour	\$35.01
		Compactor, Vibratory,						
123		Drum			to 75		hour	\$25.34
		Compactor, Pneumatic,						
124	8223	Wheel			to 100		hour	\$52.15
			Caterpillar CP-					
125	8224	Vibratory Compactor	563D		145		hour	\$60.75
126	8225	Compactor, Sanitation			to 300		hour	\$97.46
127		Compactor, Sanitation			to 400		hour	\$156.79
128		Compactor, Sanitation			535		hour	\$308.62
		Compactor, Towed,						
129	8228	Pneumatic, Wheel	Hercules PT-11,	10,000 lbs		11-Wheels (Towed)	hour	\$18.71
		Compactor,Towed Steel						
130		Drum Static Compactor	GTD-54120	20,000 lbs		Grid Drum (Towed)	hour	\$23.95
131		Feeder, Grizzly			to 35		hour	\$27.43
132		Feeder, Grizzly			to 55		hour	\$34.74
133		Feeder, Grizzly			to 75		hour	\$65.75
134	8250	Dozer, Crawler	Deere 450J LT		to 75		hour	\$55.15
			Deere 650K LGP;					
135		Dozer, Crawler	ROPS/FOPS		to 105		hour	\$73.31
136		Dozer, Crawler			to 160		hour	\$95.45
137		Dozer, Crawler			to 250		hour	\$152.20
138	8254	Dozer, Crawler			to 360		hour	\$223.35

	А	В	С	D	E	F	G	Н
1	Cost Code	Equipment	Specifications	Capacity or Size	HP	Notes	Unit	2021 Rate
			Make/Model:					
			CAT D10T (disc.					
			2014);					
			Protection:					
			EROPS; Type Semi					
139		Dozer, Crawler	U		to 574		hour	\$348.96
140		Dozer, Crawler			to 850		hour	\$363.50
141		Dozer, Wheel			to 300		hour	\$106.42
142		Dozer, Wheel			to 400		hour	\$102.64
143		Dozer, Wheel			to 500		hour	\$200.86
144	8263	Dozer, Wheel			to 625		hour	\$242.66
			3 hitch attach for					
			tractor; 2007					
145	8269	Box Scraper	Befco		0		hour	\$3.70
						Includes teeth. Does not		
						include		
146	8270	Bucket, Clamshell	Capacity	1.0 CY	0	Clamshell & Dragline	hour	\$4.74
						Includes teeth. Does not		
						include		
147	8271	Bucket, Clamshell	Capacity	2.5 CY	0	Clamshell & Dragline	hour	\$9.12
						Includes teeth. Does not		
						include		
148	8272	Bucket, Clamshell	Capacity	5.0 CY	0	Clamshell & Dragline	hour	\$13.62
						Includes teeth. Does not		
						include		
149	8273	Bucket, Clamshell	Capacity	7.5 CY	0	Clamshell & Dragline	hour	\$26.52
						Does not include		
						Clamshell &		
150	8275	Bucket, Dragline	Capacity	2.0 CY	0	Dragline	hour	\$4.06
						Does not include		
						Clamshell &		
151	8276	Bucket, Dragline	Capacity	5.0 CY	0	Dragline	hour	\$10.14

	А	В	С	D	E	F	G	Н
1	Cost Code	Equipment	Specifications	Capacity or Size	НР	Notes	Unit	2021 Rate
						Does not include		
						Clamshell &		
152	8277	Bucket, Dragline	Capacity	10 CY	0	Dragline	hour	\$14.62
						Does not include		
						Clamshell &		
153	8278	Bucket, Dragline	Capacity	14 CY	0	Dragline	hour	\$19.02
						Crawler, Truck & Wheel.		
154	8280	Excavator, Hydraulic	Bucket Capacity	0.5 CY	to 45	Includes bucket.	hour	\$20.46
						Crawler, Truck & Wheel.		
155	8281	Excavator, Hydraulic	Bucket Capacity	1.0 CY	to 90	Includes bucket.	hour	\$57.67
						Crawler, Truck & Wheel.		
156	8282	Excavator, Hydraulic	Bucket Capacity	1.5 CY	to 160	Includes bucket.	hour	\$82.48
						Crawler, Truck & Wheel.		
157	8283	Excavator, Hydraulic	Bucket Capacity	2.5 CY	to 265	Includes bucket.	hour	\$137.11
						Crawler, Truck & Wheel.		
158	8284	Excavator, Hydraulic	Bucket Capacity	4.5 CY	to 420	Includes bucket.	hour	\$272.66
						Crawler, Truck & Wheel.		
159	8285	Excavator, Hydraulic	Bucket Capacity	7.5 CY	to 650	Includes bucket.	hour	\$309.18
						Crawler, Truck & Wheel.		
160	8286	Excavator, Hydraulic	Bucket Capacity	12 CY	to 1000	Includes bucket.	hour	\$472.94
			2007 model					
161	8287	Excavator	Gradall XL3100 III		184		hour	\$104.57
			2003 model					
162	8288	Excavator	Gradall XL4100 III		238		hour	\$120.67
			2006 model					
163		Excavator	Gradall XL5100		230		hour	\$135.66
164	8290	Trowel, Concrete	Diameter	48 In	to 12		hour	\$4.46
165		Fork Lift	Capacity	6000 Lbs	to 60		hour	\$13.63
166	8301	Fork Lift	Capacity	12000 Lbs	to 90		hour	\$18.66
167	8302	Fork Lift	Capacity	18000 Lbs	to 140		hour	\$26.03
168	8303	Fork Lift	Capacity	50000 Lbs	to 215		hour	\$57.41

	А	В	С	D	E	F	G	Н
1	Cost Code	Equipment	Specifications	Capacity or Size	HP	Notes	Unit	2021 Rate
		Fork Lift Material	Diesel, CAT					
169	8306	Handler	ТН360В	6600-11500 gvwr lbs	94.9	3.1- 3.5 Mton	hour	\$46.49
		Fork Lift Material	Diesel, CAT					
170	8307	Handler	ТН460В	9000 Lbs	94.9	4.5 - 4.9 Mton	hour	\$53.54
		Fork Lift Material	Diesel, CAT					
171	8308	Handler	ТН560В	10000 Lbs	117.5	4.5 - 4.9 Mton	hour	\$58.74
			2003 ACS Paddle					
172	8309	Fork Lift Accessory	Fork		0		hour	\$3.58
173	8310	Generator	Prime Output	5.5 KW	to 10		hour	\$4.95
174	8311	Generator	Prime Output	16 KW	to 25		hour	\$7.92
175	8311-1	Generator		20 KVA	44		hour	\$25.00
176	8312	Generator	Prime Output	60KW	to 88		hour	\$25.92
177	8313	Generator	Prime Output	100 KW	to 125		hour	\$40.01
178	8314	Generator	Prime Output	150 KW	to 240		hour	\$55.67
179	8315	Generator	Prime Output	210 KW	to 300		hour	\$77.67
180	8316	Generator	Prime Output	280 KW	to 400		hour	\$88.84
181	8317	Generator	Prime Output	350 KW	to 500		hour	\$99.73
182	8317-1	Generator	Prime Output	400KVA = 320KW	464	Enclosed	hour	\$118.18
183	8318	Generator	Prime Output	530 KW	to 750		hour	\$159.09
184	8319	Generator	Prime Output	710 KW	to 1000		hour	\$204.67
185	8320	Generator	Prime Output	1100 KW	1645	Open	hour	\$362.20
186	8321	Generator	Prime Output	2500 KW	to 3000		hour	\$561.53
187	8322	Generator	Prime Output	1,000 KW	to 1645	Enclosed	hour	\$467.83
188	8323	Generator	Prime Output	1,500 KW	to 2500	Enclosed	hour	\$544.93
189	8324	Generator	Prime Output	1100KW	2500	Enclosed	hour	\$544.93
190	8325	Generator	Prime Output	40KW	63	Open	hour	\$23.48
191	8326	Generator	Prime Output	20KW	35	Open/Closed	hour	\$16.70
192	8327	Generator Large	Prime Output	800 KW	1065		hour	\$235.71
193	8327-1	Generator	Prime Output	80 KW	120		hour	\$32.09
			7-Megawatts			12470- Volts to Micro		
			Solar, 3-			grid, or 115000 Volts to		
		SOLAR/GAS Turbine	Megawatts Stean			City Utility, When		
194	8327-2	Generator-Taurus 70	Turbine	7000 KW	10915	operated with gas	hour	\$2,600.00

	А	В	С	D	E	F	G	Н
1	Cost Code	Equipment	Specifications	Capacity or Size	HP	Notes	Unit	2021 Rate
			7-Megawatts			12470- Volts to Micro		
			Solar, 3-			grid, or 115000 Volts to		
		SOLAR/GAS Turbine	Megawatts Stean			City Utility, When		
195	8327-3	Generator-Taurus 70	Turbine	7001 KW	10915	operated with Solar	hour	\$800.00
196	8328	Generator	Prime Output	900 KW	1355		hour	\$299.28
197	8328-1	Generator Heavy Duty	Prime Output	2000KW		Open	hour	\$496.86
198	8329	Generator	Prime Output	1000 KW	to 1645	Open	hour	\$450.78
						Includes Rigid and		
						Articulate		
199	8330	Graders	Moldboard Size	10 Ft	to 110	equipment.	hour	\$44.60
						Includes Rigid and		
						Articulate		
200	8331	Graders	Moldboard Size	12 Ft	to 150	equipment.	hour	\$65.12
						Includes Rigid and		
						Articulate		
201	8332	Graders	Moldboard Size	14 Ft	to 225	equipment.	hour	\$100.61
			CAT 140; ROPS;					
			Diesel;					
			Moldboard Size:					
202	8334	Graders	168 x 24 x 0.9	Diesel	275		hour	\$124.00
						Per 25 foot length.		
						Includes		
203	8350	Hose, Discharge	Diameter	3 In	0	couplings.	hour	\$0.16
						Per 25 foot length.		
						Includes		
204	8351	Hose, Discharge	Diameter	4 In	0	couplings.	hour	\$0.24
						Per 25 foot length.		
						Includes		
205	8352	Hose, Discharge	Diameter	6 In	0	couplings.	hour	\$0.61
						Per 25 foot length.		
						Includes		
206	8353	Hose, Discharge	Diameter	8 ln	0	couplings.	hour	\$0.63

	А	В	С	D	E	F	G	Н
1	Cost Code	Equipment	Specifications	Capacity or Size	HP	Notes	Unit	2021 Rate
						Per 25 foot length.		
						Includes		
207	8354	Hose, Discharge	Diameter	12 ln	0	couplings.	hour	\$0.93
						Per 25 foot length.		
						Includes		
208	8355	Hose, Discharge	Diameter	16 ln	0	couplings.	hour	\$1.73
						Per 25 foot length.		
						Includes		
209	8356	Hose, Suction	Diameter	3 In	0	couplings.	hour	\$0.29
						Per 25 foot length.		
						Includes		
210	8357	Hose, Suction	Diameter	4 In	0	couplings.	hour	\$0.34
						Per 25 foot length.		
						Includes		
211	8358	Hose, Suction	Diameter	6 In	0	couplings.	hour	\$1.13
						Per 25 foot length.		
						Includes		
212	8359	Hose, Suction	Diameter	8 In	0	couplings.	hour	\$1.13
						Per 25 foot length.		
						Includes		
213	8360	Hose, Suction	Diameter	12 ln	0	couplings.	hour	\$1.75
						Per 25 foot length.		
						Includes		4
214		Hose, Suction	Diameter	16 ln	0	couplings.	hour	\$3.34
215		Loader, Crawler	Bucket Capacity	0.5 CY	to 32	Includes bucket.	hour	\$20.66
216		Loader, Crawler	Bucket Capacity	1 CY	to 60	Includes bucket.	hour	\$35.85
217		,	Bucket Capacity	2 CY	to 118	Includes bucket.	hour	\$69.98
218		Loader, Crawler	Bucket Capacity	3 CY	to 178	Includes bucket.	hour	\$126.60
219		Loader, Crawler	Bucket Capacity	4 CY	to 238	Includes bucket.	hour	\$120.21
220		Loader, Wheel	Bucket Capacity	0.5 CY	to 38		hour	\$21.01
221		Loader, Wheel	Bucket Capacity	1 CY	to 60		hour	\$41.05
222		Loader, Wheel	Bucket Capacity	2 CY	to 105	CAT-926	hour	\$39.35
223	8393	Loader, Wheel	Bucket Capacity	3 CY	to 152		hour	\$46.45

	А	В	С	D	E	F	G	Н
1	Cost Code	Equipment	Specifications	Capacity or Size	HP	Notes	Unit	2021 Rate
224	8394	Loader, Wheel	Bucket Capacity	4 CY	232		hour	\$78.13
225	8395	Loader, Wheel	Bucket Capacity	5 CY	255		hour	\$80.80
226	8396	Loader, Wheel	Bucket Capacity	6 CY	to 305		hour	\$113.83
227	8397	Loader, Wheel	Bucket Capacity	7 CY	to 360		hour	\$139.70
228	8398	Loader, Wheel	Bucket Capacity	8 CY	to 530		hour	\$190.00
229	8399	Tractor	John Deere 6605	Tractor with mower	95		hour	\$17.33
			New Holland	Tractor - agriculture				
230	8400	Tractor	T6031	all purpose	115		hour	\$35.56
231	8401	Loader, Tractor, Wheel	Bucket Capacity	0.87 CY	to 80	Case 580 Super L	hour	\$37.76
ΓT		Mixer, Concrete						
232	8410	Portable	Batching Capacity	10 Cft	8	Diesel Powered	hour	\$3.17
		Mixer, Concrete						
233	8411	Portable	Batching Capacity	12 Cft	11	Gasoline Powered	hour	\$5.48
П		Mixer, Concrete, Trailer						
234	8412	Mounted	Batching Capacity	11 Cft	to 10		hour	\$14.59
		Mixer, Concrete, Trailer						
235	8413	Mounted	Batching Capacity	16 Cft	to 25		hour	\$19.70
236	8414	Truck, Concrete Mixer	Mixer Capacity	13 CY	to 300		hour	\$85.90
		Hand-Held, Pavement	Air Tool/Electric					
237	8419	Breakers	Power	90 Lbs	0		hour	\$1.17
		Self-Propelled	Self-Propelled					
238	8420	Pavement Breaker,	(Diesel)		to 70-80		hour	\$59.37
239	8421	Vibrator, Concrete	Hand Held		to 4		hour	\$1.65
			Spread Hopper					
240	8423	Spreader, Chip	Width	12.5 Ft	to 152		hour	\$88.36
			Spread Hopper					
241	8424	Spreader, Chip	Width	16.5 Ft	to 215		hour	\$121.45
		Spreader, Chip,						
242	8425	Mounted	Hopper Size	8 Ft	to 8	Trailer & truck mounted.	hour	\$4.65
						Does not include Prime		
243	8430	Paver, Asphalt, Towed			0	Mover.	hour	\$12.84

	А	В	С	D	E	F	G	Н
1	Cost Code	Equipment	Specifications	Capacity or Size	НР	Notes	Unit	2021 Rate
						Includes wheel and		
						crawler		
244	8431	Paver, Asphalt	Crawler		to 50	equipment.	hour	\$66.94
						Includes wheel and		
						crawler		
245	8432	Paver, Asphalt	Crawler		to 125	equipment.	hour	\$92.45
						Includes wheel and		
						crawler		
246	8433	Paver, Asphalt	Crawler		to 175	equipment.	hour	\$252.13
						Includes wheel and		
						crawler		
247	8434	Paver, Asphalt		35,000Lbs & Over	to 250	equipment.	hour	\$246.91
248	8436	Pick-up, Asphalt			to 110		hour	\$112.03
249	8437	Pick-up, Asphalt	Cederapids	CR MS-2	113 to 140	Asphalt-Pick-up Machine	hour	\$146.98
250	8438	Pick-up, Asphalt	Blaw-Knox	MC-330	184 to 200	Asphalt-Pick-up Machine	hour	\$196.08
251		Pick-up, Asphalt		MTV 1000C	to 275	Asphalt-Pick-up Machine	hour	\$282.37
252		Striper	Paint Capacity	40 Gal	to 22		hour	\$16.76
253		Striper	Paint Capacity	90 Gal	to 60		hour	\$23.17
254	8442	Striper	Paint Capacity	120 Gal	to 122		hour	\$42.65
255		• •	Paint Capacity	120 Gal	to 460		hour	\$76.28
256	8446	Striper, Walk-behind	Paint Capacity	12 Gal	5		hour	\$3.96
			2002 Leeboy					
		Paver Accessory - Belt	Conveyor Belt					
257	8447	Extension	Extension	24' X 50'	0	crawler	hour	\$37.18
		Plow, Snow, Grader				Include Grader for total		
258	8450	Mounted	Width	to 10 Ft	0	cost	hour	\$28.51
		Plow, Snow, Grader				Include Grader for total		
259	8451	Mounted	Width	to 14 Ft	0	cost	hour	\$33.00

	А	В	С	D	E	F	G	Н
1	Cost Code	Equipment	Specifications	Capacity or Size	HP	Notes	Unit	2021 Rate
						Include truck for total		
260	8452	Plow, Truck Mounted	Width	to 15 Ft	0	cost	hour	\$23.80
						With leveling wing.		
						Include		
261	8453	Plow, Truck Mounted	Width	to 15 Ft	0	truck for total cost	hour	\$40.69
262	8455	Spreader, Sand	Mounting	Tailgate, Chassis	0	Truck not included	hour	\$8.02
263	8456	Spreader, Sand	Mounting	Dump Body	0	Truck not included	hour	\$10.88
264	8457	Spreader, Sand	Mounting	Truck (10yd)	0	Truck not included	hour	\$13.62
265	8458	Spreader, Chemical	Capacity	5 CY	to 4	Trailer & truck mounted.	hour	\$6.49
266	8469	Pump - Trash Pump	10 MTC	2" Pump	to 7	10,000 gph	hour	\$8.28
			Centrifugal, 8M					
267	8470	Pump	pump	2" - 10,000 gal/hr.	to 4.5	Hoses not included.	hour	\$7.79
268	8471	Pump	Diaphragm pump	2" - 3,000 gal/hr.	to 6	Hoses not included.	hour	\$9.59
			Centrifugal, 18M	3" - 18,000 gal/hr.				
269	8472	Pump	pump	pump	to 10	Hoses not included.	hour	\$9.05
270	8473	Pump			to 15	Hoses not included.	hour	\$12.25
271	8474	Pump			to 25	Hoses not included.	hour	\$13.96
272	8475	Pump			to 40	Hoses not included.	hour	\$17.22
273	8476	Pump	4"	40,000 gal/hr.	to 60	Hoses not included.	hour	\$26.88
274	8477	Pump			to 95	Hoses not included.	hour	\$34.78
275	8478	Pump			to 140	Hoses not included.	hour	\$41.19
276	8479	Pump			to 200	Hoses not included.	hour	\$51.50
277	8480	Pump			to 275	Does not include Hoses.	hour	\$69.29
278	8481	Pump			to 350	Does not include Hoses.	hour	\$82.80
279	8482	Pump			to 425	Does not include Hoses.	hour	\$100.40
280	8483	Pump			to 500	Does not include Hoses.	hour	\$118.85
281	8484	Pump			to 575	Does not include Hoses.	hour	\$138.44
282	8484-1	Pump	Electric Motor		600		hour	\$142.65
283	8485	Pump			to 650	Does not include Hoses.	hour	\$157.05
284	8485-1	Pump			746		hour	\$177.36
285	8485-2	Pump			905		hour	\$215.60

	А	В	С	D	E	F	G	Н
1	Cost Code	Equipment	Specifications	Capacity or Size	HP	Notes	Unit	2021 Rate
286	8485-3	Pump		110,000 gpm	1000		hour	\$360.00
287	8485-4	Pump	CAT-3606 Engine		2250		hour	\$775.00
288	8485-5	Pump		464,125 gpm	2500		hour	\$780.00
		Pump -High Powered						
		Pump with Caterpillar	C280-12 CAT	1000-RPM, 20,000		Fairbanks Morse/Lufkin		
289	8485-6	Engine	Engine	CFM	5444	Heavy Duty Pump	hour	\$1,285.00
						Add this rate to truck rate		
		Aerial Lift, Truck	Max. Platform			for		
290	8486	Mounted	Height	40 Ft		total lift and truck rate	hour	\$12.05
						Add this rate to truck rate		
		Aerial Lift, Truck	Max. Platform			for		
291	8487	Mounted	Height	61 Ft		total lift and truck rate	hour	\$20.95
						Add this rate to truck rate		
		Aerial Lift, Truck	Max. Platform			for		
292	8488	Mounted	Height	80 Ft		total lift and truck rate	hour	\$38.85
						Articulated and		
						Telescoping.		
						Add this rate to truck rate		
		Aerial Lift, Truck	Max. Platform			for total lift and truck		
293	8489	Mounted	Load - 600Lbs	81 Ft -100 Ft. Ht.		rate	hour	\$39.10
		Aerial Lift, Self-	Max. Platform			Articulated, Telescoping,		
294		Propelled	Height	37 Ft. Ht.	to 15	Scissor.	hour	\$9.15
		Aerial Lift, Self-	Max. Platform			Articulated, Telescoping,		
295	8491	Propelled	Height	60 Ft. Ht.	to 30	Scissor.	hour	\$33.24
		Aerial Lift, Self-	Max. Platform			Articulated, Telescoping,		
296		Propelled	Height	70 Ft. Ht.	to 50	Scissor.	hour	\$26.58
		Aerial Lift, Self-	Max. Platform			Articulated and		
297	8493	Propelled	Height	125 Ft. Ht.	to 85	Telescoping.	hour	\$57.49
		Aerial Lift, Self-	Max. Platform			Articulated and		
298		Propelled	Height	150 Ft. Ht.	to 130	Telescoping.	hour	\$74.93
		I.C. Aerial Lift, Self-	Max. Platform					
299	8495	Propelled	Load - 500 Lbs	75"x155" <i>,</i> 40Ft Ht.	to 80	2000 Lbs Capacity	hour	\$30.13

	А	В	С	D	E	F	G	Н
1	Cost Code	Equipment	Specifications	Capacity or Size	HP	Notes	Unit	2021 Rate
						Include truck rate for		
300	8496	Crane, Truck Mounted	Max. Lift Capacity	24000 Lbs	0	total cost	hour	\$20.80
						Include truck rate for		
301	8497	Crane, Truck Mounted	Max. Lift Capacity	36000 Lbs	0	total cost	hour	\$29.28
						Include truck rate for		
302	8498	Crane, Truck Mounted	Max. Lift Capacity	60000 Lbs	0	total cost	hour	\$45.07
303	8500	Crane	Max. Lift Capacity	8 MT	to 80		hour	\$59.49
304	8501	Crane	Max. Lift Capacity	15 MT	to 150		hour	\$98.07
305	8502	Crane	Max. Lift Capacity	50 MT	to 200		hour	\$141.89
306	8503	Crane	Max. Lift Capacity	70 MT	to 300		hour	\$198.29
307		Crane (Crawler)	Max. Lift Capacity		to 350		hour	\$232.88
308		Saw, Concrete	Blade Diameter	14 In	to 14		hour	\$7.29
309		Saw, Concrete	Blade Diameter	26 ln	to 35		hour	\$11.63
310		Saw, Concrete	Blade Diameter	48 In	to 65		hour	\$24.18
311		Saw, Rock	Blade Diameter		to 100		hour	\$41.98
312		Saw, Rock	Blade Diameter		to 200		hour	\$94.55
313		Jackhammer (Dry)	Weight Class	25-45 Lbs	0	Pneumatic Powered	hour	\$1.71
314		Jackhammer (Wet)	Weight Class	30-55 Lbs	0	Pneumatic Powered	hour	\$1.90
315		Scraper	Scraper Capacity	15 CY	to 262		hour	\$131.34
316		Scraper	Scraper Capacity	22 CY	to 365		hour	\$213.55
317		Scraper	Scraper Capacity	34 CY	to 500		hour	\$275.45
318	8524	Scraper	Scraper Capacity	44 CY	to 604		hour	\$327.93
			Operating					
319	8540	Loader, Skid-Steer	Capacity	976 - 1250 Lbs	to 36		hour	\$26.04
			Operating					
320	8541	Loader, Skid-Steer	Capacity	1751 - 2200 Lbs	to 66		hour	\$31.16
			Operating					
321	8542	Loader, Skid-Steer	Capacity	2901 to 3300 Lbs	to 81		hour	\$36.76

	А	В	C	D	E	F	G	Н
1	Cost Code	Equipment	Specifications	Capacity or Size	HP	Notes	Unit	2021 Rate
322		Snow Plower, Salt Spreader	Towed Salt Spreader/Snow Plower	26 ft X 8 ft	260	Plus Towed Salt Spreader	hour	\$25.00
323		Snow Blower, Truck Mounted	Capacity	600 Tph	to 75	Does not include truck	hour	\$33.74
324		Snow Blower, Truck Mounted	Capacity	1400 Tph	to 200	Does not include truck	hour	\$90.01
325		Snow Blower, Truck Mounted	Capacity	2000 Tph	to 340	Does not include truck	hour	\$135.34
326	8553	Snow Blower, Truck Mounted	Capacity	2500 Tph	to 400	Does not include truck	hour	\$147.02
327		Snow Thrower, Walk Behind	Cutting Width	25 in	to 5		hour	\$3.01
328	8559	Snow Thrower, Walk Behind	Cutting Width	60 in	to 15		hour	\$14.67
329	8559-1	SnowBroom	Oshkosh Snow Broom	Blower Airport Equipment Model 2718	450-500		hour	\$184.00
330	8560	Snow Blower	Capacity	2,000 Tph	to 400		hour	\$232.52
331	8561	Snow Blower	Capacity	2,500 Tph	to 500		hour	\$251.98
332	8561-1	Snow Blower	MTE Snow Mauler		428		hour	\$260.00
333		Snow Blower	Vammas PSB 4500MTE	Uses high quality Bristles	420		hour	\$266.00
334	8562	Snow Blower	Capacity	3,500 Tph	to 600		hour	\$278.68
335	8563	The Vammas 4500	Snow Remover	26ft Plow, 20ft Broom + Airblast	428	Equip with Plow & Broom	hour	\$263.64
336		The Vammas 5500	RM300	96"W x 20"D	350	Soil Stabilization, Reclaimer	hour	\$214.97
337	8565	Pavement Sweeper	H-Series		420	Equip with Broom	hour	\$232.21
338	8569	Dust Control De-Ice Unit	1300-2000 gal	173"Lx98"Wx51"H	5.5	Hydro Pump w/100' 1/2" hose	hour	\$3.59

	А	В	С	D	E	F	G	Н
1	Cost Code	Equipment	Specifications	Capacity or Size	HP	Notes	Unit	2021 Rate
						Loader and Backhoe		
			Loader Bucket			Buckets		
339	8570	Loader-Backhoe, Wheel	Capacity	0.5 CY	to 40	included.	hour	\$22.97
						Loader and Backhoe		
			Loader Bucket			Buckets		
340	8571	Loader-Backhoe, Wheel	Capacity	1 CY	to 70	included.	hour	\$30.36
						Loader and Backhoe		
			Loader Bucket			Buckets		
341	8572	Loader-Backhoe, Wheel	Capacity	1.5 CY	to 95	included.	hour	\$43.91
						Loader and Backhoe		
			Loader Bucket			Buckets		4
342	8573	Loader-Backhoe, Wheel	, ,	1.75 CY	to 115	included.	hour	\$52.69
			Tank Capacity			burners, insulated tank,		
			Mounted on			and		
343	8580	Distributor, Asphalt	Trailer	550 Gal	16	circulating spray bar.	hour	\$18.40
						Truck Mounted. Includes		
			Tank Capacity			burners, insulated tank,		
			Mounted on	_		and circulating spray bar.		
344	8581	Distributor, Asphalt	Trailer	1000 Gal	38	Include truck rate.	hour	\$27.35
						Truck Mounted. Includes		
			Tank Capacity			burners, insulated tank,		
			Mounted on			and circulating spray bar.		
345	8582	Distributor, Asphalt	Truck	4000 Gal		Include truck rate.	hour	\$39.34
			ETNYRE Oil					
			Distributor Model					· ·
346	8583	Distributor	- PB348		300		hour	\$44.18
			ETNYRE Quad					
347	8584	Distributor	Chip Spreader		280		hour	\$88.36
						Does not include Prime		
348	8590	Trailer, Dump	Capacity	20 CY	0	Mover.	hour	\$12.81

	А	В	С	D	E	F	G	Н
1	Cost Code	Equipment	Specifications	Capacity or Size	НР	Notes	Unit	2021 Rate
						Does not include Prime		
349	8591	Trailer, Dump	Capacity	30 CY	0	Mover.	hour	\$13.56
350	8600	Trailer, Equipment	Capacity	30 Tons	0		hour	\$16.99
351	8601	Trailer, Equipment	Capacity	40 Tons	0		hour	\$18.74
352	8602	Trailer, Equipment	Capacity	60 Tons	0		hour	\$23.01
353	8603	Trailer, Equipment	Capacity	120 Tons	0		hour	\$34.36
						Includes a centrifugal		
						pump with sump and a		
354	8610	Trailer, Water	Tank Capacity	4000 Gal	0	rear spraybar.	hour	\$15.84
						Includes a centrifugal		
						pump with		
						sump and a rear		
355	8611	Trailer, Water	Tank Capacity	6000 Gal	0	spraybar.	hour	\$19.44
						Includes a centrifugal		
						pump with		
						sump and a rear		
356	8612	Trailer, Water	Tank Capacity	10000 Gal	0	spraybar.	hour	\$22.61
						Includes a centrifugal		
						pump with		
						sump and a rear		
357		Trailer, Water	· · ·	14000 Gal	0	spraybar.	hour	\$28.09
358		Truck- Water Tanker	1000 gal. tank		175		hour	\$32.44
359		Tub Grinder			to 440		hour	\$99.68
360		Tub Grinder			to 630		hour	\$150.70
361		Tub Grinder			to 760		hour	\$192.21
362		Tub Grinder			to 1000		hour	\$337.45
363	8627	Horizontal Grinder	Model HG6000		630		hour	\$59.95
			1988 Vermeer SC-					
364	8628	Stump Grinder	112		102		hour	\$49.27
			24" grinding					
365	8629	Stump Grinder	wheel		110		hour	\$46.96

	А	В	С	D	E	F	G	Н
1	Cost Code	Equipment	Specifications	Capacity or Size	HP	Notes	Unit	2021 Rate
						Trailer & truck mounted.		
						Does not include Prime		
366	8630	Sprayer, Seed	Working Capacity	750 Gal	to 30	Mover.	hour	\$14.61
						Trailer & truck mounted.		
						Does		
367	8631	Sprayer, Seed	Working Capacity	1250 Gal	to 50	not include Prime Mover.	hour	\$20.21
						Trailer & truck mounted.		
						Does		
368	8632	Sprayer, Seed	Working Capacity	3500 Gal	to 115	not include Prime Mover.	hour	\$30.20
		Mulcher, Trailer						
369	8633	Mounted	Working Capacity	7 TPH	to 35		hour	\$15.17
		Mulcher, Trailer						
370	8634	Mounted	Working Capacity	10 TPH	to 55		hour	\$22.34
		Mulcher, Trailer						
371	8635	Mounted	Working Capacity	20 TPH	to 120		hour	\$31.50
			Soil Recycler WR					
372	8636	Scraper		w 317 gal fuel tank	563		hour	\$320.08
			Double Belly					
			Bottom-dump	26 CY of soil in one				
373	8637	Trailer	Trailer	dump	330	13 CY of soil each berry	hour	\$40.53
			Barber Beach					
			Sand Rake					
			600HDr,					
374	8638	Rake	towed		0	Towed by Beach vehicle	hour	\$16.00
			Wildcat 626					
			Cougar Trommel					
			Screen					
375		Chipper	chipper w belt		125		hour	\$35.88
376		Trailer, Office		8' x 24'	0	Cargo Size 16ft	hour	\$2.31
377		Trailer, Office	Trailer Size	8' x 32'	0	Cargo Size 24ft	hour	\$2.74
378	8642	Trailer, Office	Trailer Size	10' x 32'	0	Cargo Size 20ft	hour	\$3.62

	А	В	С	D	E	F	G	Н
1	Cost Code	Equipment	Specifications	Capacity or Size	HP	Notes	Unit	2021 Rate
			Haz-Mat			Move by Tractor to		
379		Trailer	Equipment trailer	8'x18'	0	Location	hour	\$39.42
		Trailer, Covered Utility				Move by Tractor to		
380	8644	Trailer	(7' X 16')		0	Location	hour	\$5.96
			8' x 24' shower					
			trailer- 12					
381	8645	Trailer, Dodge Ram	showers		101		hour	\$30.75
			8' x 32' flatbed					
382	8646	Trailer, Dodge	water	25,000 MGVW	200	4x2-Axle	hour	\$29.00
						Walk-behind, Crawler &		
						Wheel		
						Mounted. Chain and		
383	8650	Trencher			to 40	Wheel.	hour	\$17.24
						Walk-behind, Crawler &		
						Wheel		
						Mounted. Chain and		
384	8651	Trencher			to 85	Wheel.	hour	\$29.85
			New Holland					
			B115B (disc.					
385	8652	Trencher/Ditcher	2012)	EROPS 4WD	108		hour	\$36.56
			New Holland					
386	8653	Trencher/Ditcher		EROPS 4WD	284		hour	\$86.94
			2008 Griswold					
387	8654	Trencher Accessories	Trenchbox		0		hour	\$1.99
388		Plow, Cable	Plow Depth	24 in	to 30		hour	\$13.93
389	8661	Plow, Cable	Plow Depth	36 in	to 65		hour	\$40.95
390	8662	Plow, Cable	Plow Depth	48 in	to 110		hour	\$43.15
			Max. Boom = 60			Includes hydraulic pole		
		Derrick, Hydraulic	Ft, 12,000 Ft-Lb	Lift Capacity 15,500		alignment attachment.		
391	8670	Digger	Hydraulic	Lbs	275	Include truck rate	hour	\$36.15

	А	В	С	D	E	F	G	Н
1	Cost Code	Equipment	Specifications	Capacity or Size	HP	Notes	Unit	2021 Rate
			Max. Boom = 90			Includes hydraulic pole		
		Derrick, Hydraulic	Ft, 14000 Ft-Lb	Lift Capacity 26,700		alignment attachment.		
392	8671	Digger	Hydraulic	Lbs	310	Include truck rate	hour	\$56.38
						Sonic Sidegrip Vibratory		
						Pile		
393	8672	Movax SP-60	28-32 ton Head	134KW	178	Driver	Hour	\$110.73
						2-1000gpm Nozzles 1-		
		Truck, Fire Aerial		3000gpm/1000 gal		Each		
394	8680	Platform	112Ft Ladder	Water or Foam	600	side of Platform	Hour	\$85.90
		Truck, Fire, Engine Type-						
395	8681			1000GPM/300gal		Engine, with Pump & Roll	hour	\$141.96
		Truck, Fire, Engine Type-						
396	8682	2		500GPM/300gal		Engine, with Pump & Roll	hour	\$133.85
		Truck, Fire, Engine Type-						
397	8683	3	48 ft Ladder	150gpm/500gal,	115-149	Hose 1-1/2"D 500' Long	hour	\$120.97
			Aerial 100Ft					
398	8684	Truck, Fire	Ladder	2000gpm/500gal	450	1500gpm Monitor/nozzle	hour	\$180.49
				1000gpm/400gal,				
				500gpm Master				
399	8685	Truck, Fire (Type-I)	48 ft Ladder	Stream	200-250	Hose 2-1/2"D 1200' Long	hour	\$156.16
400		Truck, Fire (Type-II)	48 ft Ladder	500gpm/300gal	100-199	Hose 2-1/2"D 1000' Long	hour	\$133.34
		Truck, Fire, Support						
401		Water Tender S1		300GPM/4000gal	115-149	S1 Water Tender	hour	\$116.10
		Truck, Fire, Support						
402		Water Tender S2		200GPM/2500gal		S2 Water Tender	hour	\$104.95
		Truck, Fire, Support						
403		Water Tender S3		200GPM/1000gal		S3 Water Tender	hour	\$80.11
404		Truck, Fire		1000 GPM @150 psi			hour	\$71.31
405		Truck, Fire		1250 GPM/2500 gal	500		hour	\$75.61
406		Truck, Fire		1500 GPM/1000 gal	500		hour	\$82.24
407	8693	Truck, Fire		2000 GPM			hour	\$85.22

	А	В	С	D	E	F	G	Н
1	Cost Code	Equipment	Specifications	Capacity or Size	HP	Notes	Unit	2021 Rate
			Aerial 75 ft					
408	8694	Truck, Fire Ladder	Ladder	1500GPM/600 gal	475		hour	\$122.69
			Aerial 150 ft					
409	8695	Truck, Fire Ladder	Ladder	150 FT		No Platform,	hour	\$148.48
410	8696	Truck, Fire	No Ladder		330	Rescue Equipment	hour	\$97.71
		Truck, Fire, Tactical						
411	8697	Water Tender T1		250GPM/2000gal	175		hour	\$121.17
		Truck, Fire, Tactical						
412	8698	Water Tender T2		250GPM/1000gal			hour	\$104.11
		Truck, Fire, Engine Type-						
413	8699	3		150GPM/500gal		Engine, with Pump & Roll	hour	\$128.27
414	8700	Truck, Flatbed	Maximum Gvw	15000 Lbs	to 200	Diesel Engine	hour	\$22.24
415	8701	Truck, Flatbed	Maximum Gvw	25000 Lbs	to 275	Gasoline Engine	hour	\$33.72
416	8701-1	Truck, Flatbed	Maximum Gvw	25000 Lbs	200	Diesel Engine	hour	\$28.95
417	8702	Truck, Flatbed	Maximum Gvw	30000 Lbs	217	Diesel Engine	hour	\$29.31
418	8703	Truck, Flatbed	Maximum Gvw	45000 Lbs	to 380	Diesel Engine	hour	\$48.23
			48ft to 53ft, flat-					
			bed, freight, two					
419	8708	Trailer, Semi	axle	50,000 gvwr	0		hour	\$8.79
			enclosed 48 ft to					
420	8709	Trailer, Semi	53 ft, two axles	50,000 gvwr	0	Enclosed	hour	\$9.96
			28ft, single axle,					
421	8710	Trailer, Semi	freight	25,000 gvwr	0		hour	\$10.15
422	8711	Flat Bed Utility Trailer	6 ton		0		hour	\$3.62
				Aries Pathfinder				
		Sewer Camera		System Control				
423	8711-1	Inspection Truck		Center, Work Station			hour	\$14.00
		Cleaner, Sewer/Catch						
424	8712	Basin	Hopper Capacity	5 CY	50	Truck Mounted. (350 gal)	hour	\$25.81
		Cleaner, Sewer/Catch				Truck Mounted. (1500		
425	8713	Basin	Hopper Capacity	14 CY	60	Gal)	hour	\$31.96

	А	В	С	D	E	F	G	Н
1	Cost Code	Equipment	Specifications	Capacity or Size	HP	Notes	Unit	2021 Rate
			800 Gal					
		Combined Sewer	Spoils/400 Gal					
426	8714	Cleaning	Water	500/800 gal	190	with water & waste Tanks	hour	\$86.29
		Vector Combine						
427		Vacuum Truck	1500 gal Water	15 Cu Yd	330	with water & waste Tanks	hour	\$88.16
		Combined Sewer						
428	8714-2	Cleaning	Peterbilt	1500 gal Water	345		hour	\$90.00
			VACCON					
		Combined Sewer	Combined Sewer					
429		Cleaning	Vacuum	500-1500 gals	370		hour	\$80.00
430	8715	Truck, Hydro Vac	model LP555DT	pump	36	Towed by tractor	hour	\$18.76
			Tow by Truck					
			22,000 cfm			Leaf Vac + Truck Code		
431		Leaf Vac	capacity		85	8811	hour	\$53.67
432	8717	Truck, Vacuum	60,000 GVW		400		hour	\$77.79
			CPB Rating -					
433	8718	Trash Pump	10MTC	10000 gal/Hr	7	Self- Priming Trash Pump	hour	\$7.87
			model 2007					
434		Litter Picker	Barber		0	Towed by tractor	hour	\$9.59
435		Truck, Dump	Struck Capacity	8 CY	to 220		hour	\$52.96
436		Truck, Dump	Struck Capacity	10 CY	to 320		hour	\$65.75
437		Truck, Dump	Struck Capacity	12 CY	to 400		hour	\$73.31
438	8723	Truck, Dump	Struck Capacity	14 CY	to 400		hour	\$78.59
		Truck, Dump, Off						
439		Highway	Struck Capacity	28 CY	to 450		hour	\$139.82
440	8725	Truck, Dump	Struck Capacity	18 CY	to 400		hour	\$84.27
			Caterpillar Sand					
441		Truck, Dump	hauling truck		489		hour	\$132.00
442		Truck, Garbage	Capacity	25 CY	to 255		hour	\$50.49
443	8731	Truck, Garbage	Capacity	32 CY	to 325		hour	\$57.86

	А	В	С	D	Е	F	G	Н
1	Cost Code	Equipment	Specifications	Capacity or Size	HP	Notes	Unit	2021 Rate
			Environmental Beta Attenuation Air					
444	8733	E-BAM Services	Monitor		0	Powered by Solar System	hour	\$3.11
445	8734	Attenuator, Safety	that can stop a vehicle at 60 mph		0		hour	\$5.44
445	0734	Attenuator, Salety	2004 Truck				noui	\$5.44
446	8735	Truck, Attenuator	Mounted for 60		0		hour	\$3.94
447	8736	Truck, Tow	1987 Chevy Kodiak 70		175		hour	\$29.13
448		Van, Custom	Special Service Canteen Truck		350		hour	\$18.61
449	8745	Van, Sstep	model MT10FD		300		hour	\$22.36
450	8746	Van-up to 15 Passenger	light duty, class 1		225-300		hour	\$20.77
451			light duty, class 2		225-300		hour	\$21.06
452		Van-Cargo	light duty, class 1		225 - 300		hour	\$22.75
453		Van-Cargo	light duty, class 2		225-300		hour	\$23.00
454		Vehicle, Small			to 30		hour	\$6.50
455	8753	Vehicle, Recreational			to 10		hour	\$2.91
456		Motor Coach	GVW 50534	56 Passenger + 1- Driver	430	Passenger Transportation	Hour	\$64.84
457	8755	Golf Cart	Battery operated	2 person	0		hour	\$3.85
458	8761	Vibrator, Concrete	Shaft Length 16- ft, Head Diameter 2.5-in		2		hour	\$1.51
459		Welder, Portable			to 16	Includes ground cable and lead cable.	hour	\$3.89

	А	В	С	D	E	F	G	Н
1	Cost Code	Equipment	Specifications	Capacity or Size	HP	Notes	Unit	2021 Rate
						Includes ground cable		
						and lead		
460	8771	Welder, Portable			to 34	cable.	hour	\$7.09
						Includes ground cable		
						and lead		
461	8772	Welder, Portable			to 50	cable.	hour	\$11.95
						Includes ground cable		
						and lead		
462	8773	Welder, Portable			to 80	cable.	hour	\$12.22
						Include pump and rear		
						spray		
463	8780	Truck, Water	Tank Capacity	2500 Gal	to 175	system.	hour	\$28.95
						Include pump and rear		
						spray		
464		Truck, Water	Tank Capacity	4000 Gal	to 250	system.	hour	\$52.59
		Container & Roll Off						
465	8788	Truck	Roll off Truck	30 yds,	200	Roll-off-Truck only	hour	\$24.06
			1997 Freightliner					
466		Truck, Tractor	F120		430		hour	\$57.61
467		Truck, Tractor	4 x 2	25000 lbs	to 210		hour	\$40.49
468		Truck, Tractor	4 x 2	35000 lbs	to 330		hour	\$49.93
469	8792	Truck, Tractor	6 x 2	45000 lbs	to 360		hour	\$57.25
			Ford F-450					
470	8793	Truck	Cutaway Truck		225		hour	\$85.78
			Enclosed w/lift					
			gate. Medium					
			duty					
471	8794	Truck, Freight	class 5	gvwr 16000-19500 Lbs	200	4 X 2 Axle (D)	hour	\$27.63
			Three axle, class					
472	8795	Truck, Backhoe Carrier	8, heavy duty	over 33000Lbs	280		hour	\$35.04

	А	В	С	D	E	F	G	Н
1	Cost Code	Equipment	Specifications	Capacity or Size	HP	Notes	Unit	2021 Rate
			Eenclosed w/lift					
			gate. Heavy duty,	26,001 to 33,000 lbs				
473	8796	Truck, Freight	class 7	gvwr	217	4 X 2 Axle (D)	hour	\$31.87
				Refrigerated Box				
474	8797	Truck, Freight	M2-106	Truck	250		hour	\$31.41
			Tilt and roll-back,					
	0700	- ·	two axle, class 7					400 50
475	8/98	Truck	heavy duty,	to 33,000 gvwr	217	4 X 2 Axle (D)	hour	\$32.58
			Tilt and roll back,					
			three axle. class 8					
476	9700	Truck,	heavy duty	over 33,001 gvwr	280	6 X 4 Axle (D)	hour	\$42.92
470	6795	TTUCK,			200	When transporting	noui	\$42.92
477	8800	Truck, Pickup				people.	Imile	\$0.56
477	8800		1/2-ton Pickup					Ş0.50
478	8801	Truck, Pickup	Truck	4x2-Axle	160		hour	\$11.75
1/0			1-ton Pickup		100			<i></i>
479	8802	Truck, Pickup	Truck	4x2-Axle	234		hour	\$16.81
			1 1/4-ton Pickup					
480	8803	Truck, Pickup	Truck	4x2-Axle	260		hour	\$21.10
		· · ·	1 1/2-ton Pickup					
481	8804	Truck, Pickup	Truck	4x2-Axle	300		hour	\$21.13
			1 3/4-ton Pickup					
482	8805	Truck, Pickup	Truck	4x2-Axle	300		hour	\$21.94
			3/4-ton Pickup					
483	8806	Truck, Pickup	Truck	4x2-Axle	165		hour	\$12.77
			3/4-ton Pickup					
484	8807	Truck, Pickup	Truck	4x4-Axle	285	Crew	hour	\$19.87
			1-ton Pickup					
485	8808	Truck, Pickup	Truck	4x4-Axle	340	Crew	hour	\$20.57

	А	В	С	D	E	F	G	Н
1	Cost Code	Equipment	Specifications	Capacity or Size	HP	Notes	Unit	2021 Rate
			1 1/4-ton Pickup					
486	8809	Truck, Pickup	Truck	4x4-Axle	360	Crew	hour	\$25.19
			1 1/2-ton Pickup					
487	8810	Truck, Pickup	Truck	4x4-Axle	362	Crew	hour	\$25.53
			1 3/4-ton Pickup					
488	8811	Truck, Pickup	Truck	4x4-Axle	362	Crew	hour	\$26.24
			2005 JCB Grapple					
489	8820	Skidder Accessory	Claw		0		hour	\$1.77
			2005 ACS Grapple					
490	8821	Forklift, Accessory	Bucket		0		hour	\$1.58
			Debris/Log					
			(Knuckleboom					
491	8822	Truck, Loader	Loader/Truck)		230		hour	\$53.97
492		Chipper- Wood Recycler	•		700		hour	\$120.16
493	8824	Skidder	model Cat 525B		up to 160		hour	\$110.67
			40K lbs- model					
494		Skidder	Cat 525C		161 and up		hour	\$132.45
495	8840	Truck, Service	fuel and lube	up to 26,000 gvwr	215-225		hour	\$40.75
			2009					
			International					
			1,800 gal. storage					
496		Truck, Fuel	tank		200		hour	\$32.46
		Mobile Command	(8' X 28') with 7.5			Move to Location by		
497	8842	Trailer	KW Generator		0	Tractor	hour	\$14.94
			(8' X 31') with 4.5			Move to Location by		
498	8843	Mobile Response Trailer			0	Tractor	hour	\$14.06
			(unified) (RV)					
		Mobile Command		43 FT Long with				
499	8844		35	Generator	400		hour	\$87.31
		Mobile Command Post						
500	8845	Vehicle	(RV) (In- Motion)	22-Ft Long	340		hour	\$31.99

	А	В	С	D	E	F	G	Н
1	Cost Code	Equipment	Specifications	Capacity or Size	HP	Notes	Unit	2021 Rate
			(RV) (Stationary)					
		Mobile Command Post	w/9.6 KW					
501	8846	Vehicle	Generator	22-Ft Long	340		hour	\$20.61
			48'x8' Trailer,					
			Fully Equiped					
		Mobile Command	Mobile			Move to Location by		
502	8847	Center (Trailer)	Command Center	48-Ft Long	0	Tractor	hour	\$32.13
			48'x8' When					
		Mobile Command	being Moved					
503	8848	Center (Trailer)	w/Truck Tractor		310		hour	\$51.40
			43'x8.5' x 13.5'H					
		Mobile Command	with self 30kw			Generator Rate not		
504	8849	Center	Generator		280	included	hour	\$56.15
		Mobile Command	2007-Freightliner					
505	8850	Center	MT-55 <i>,</i> (RV)		260		hour	\$47.78
			1990- Ford					
			Econoline-					
			Communication			Communication		
506	8851	Mobile Command Van	Van		230	Equipment	hour	\$43.38
			47.5' X 8.75 Fully					
		Mobile Command	Equip' (In motion)					
507	8852	Center	(RV)		410		hour	\$68.99
			47.5' X 8.75 Fully					
		Mobile Command	Equip'					
508	8853	Center	(Stationary)		410		hour	\$46.53
		Mobile Command	53' X 8.75 Fully					
509	8854	Vehicle	Equip		480-550		hour	\$100.22
			Terex/Amida AL					
			4000. with (4)					
			500					
510	8870	Light Tower	watt lights	10kw power unit	13.5		hour	\$10.56
511	8871	Light Tower	2004 Allmand		7.5		hour	\$6.67

	А	В	С	D	E	F	G	н
1	Cost Code	Equipment	Specifications	Capacity or Size	HP	Notes	Unit	2021 Rate
			(Spider)	Vibration & Conveyor				
512	8872	SandBagger Machine	automatic	Motors	2-4.5		hour	\$50.11
			OH-58 KIOWA					
			(Military) is the					
			same					
513	8900	Helicopter	as "Bell-206B3		420		hour	\$538.00
			OH-58 KIOWA					
			(Military) is the					
			same					
514	8901	Helicopter	as "Bell-206BR		420		hour	\$495.85
			Model Bell 206-L3					
			Jet Range					
515	8902	Helicopter	Helicopter		650	Jet Range III-Helicopter	hour	\$583.05
			Model Bell 206L1					
516	8903	Helicopter	Long Ranger		650	Long Ranger	hour	\$593.67
			Model Bell 206LT					
			Long Range					
517	8904	Helicopter	Twinranger		450	Twinranger	hour	\$773.99
			Model Bell 407					
518	8905	Helicopter	EMS- Ambulance		630		hour	\$666.00
			Model Navajo PA-					
519	8906	Fixed wing	31		310		hour	\$450.00
			PA-31-350,					
			Navajo Chieftn					
			twin					
520	8907	Fixed wing	engine		350		hour	\$490.00
			Model UH-60					
			(Blackhawk)					
521	8908	Helicopter	medium lift	Medium Lift	1890	Fire Fighter Same as S70C	hour	\$3,016.09
			Model UH-A					
			(Blackhawk)					
522	8909	Helicopter	Medium lift	Medium Lift	1890	Fire Fighter	hour	\$5,636.87

	А	В	С	D	E	F	G	Н
1	Cost Code	Equipment	Specifications	Capacity or Size	HP	Notes	Unit	2021 Rate
			Model CH-47					
			(Chinook) heavy					
523	8910	Helicopter	lift	Heavy Lift	2850	Fire Fighter	hour	\$11,009.51
			Model Bell					
524	8911	Helicopter- light utility	407GX - 7 seater	7-Seaters	675	Passenger Aircraft	hour	\$657.00
			Modle Bell 206L-					
525	8912	Helicopter- light utility	7 seater	7-Seaters	420	Passenger Aircraft	hour	\$616.43
	0010	I I - P			726			¢570.00
526	8913	Helicopter	Model Bell-206L4		726		hour	\$570.00
527	0014	Fixed wing	Blackhawk King Air B200XP61		669		hour	¢1 608 00
527	0914	Fixed wing	Blackhawk		009		liour	\$1,608.00
528	8915	Fixed wing	Caravan XP42 A		850		hour	\$864.00
520	0515		King Air C90		0.00			\$004.00
529	8916	Fixed wing	XP135 A		550		hour	\$1,416.00
530		Aerostar Helicopter	Aerostar 601P		290		hour	\$463.00
			Engine:1 ×					
			Lycoming T53-L-			Travel Range 253 Nautical		
531	8918	Huey Helicopter	11 turboshaft		1100	Miles	hour	\$1,396.01
532	8919	Helicopter	Utility Bell 429		710		hour	\$920.00
			Commercial Bell					
533	8920	Helicopter	Huey II				hour	\$1,107.00
						Overhead/Underground		
			Overhead Wire			Wire		
534	8943	Wire Puller Machine	Pulling Machine		30	Pulling Machine	hour	\$20.44
						Overhead Wire		
		Wire Tensioning				Tensioning		
535	8944	Machine	3000 Lbs			Machine	hour	\$15.05
			model 2008					4.4
536	8945	Aerial Lift	Genie Scissor Lift	1000 Lbs		24 Volt	hour	\$6.53

230 W. Monroe Street, Suite 1840 Chicago, IL 60606

Site Distance Study

Driveway Sight Distance Study for Highway Access Technical Memorandum

Date: May 9, 2023 To: Jim Auld, Renewable Properties From: Gio Del Rivero, TRC Subject: Kane County, Highway 20 Solar Project **Project No.:** 500015.0000.0005

1.0 Introduction

On behalf of RPIL Solar 5 LLC, TRC conducted a driveway sight distance study for the Kane County, Illinois, Highway 20 Solar Project (Project). The Project will be located on approximately 25 acres within a 116acre parcel of land along U.S. Highway 20, west of Pingree Grove, Illinois. The Project is for proposed ground-mounted solar PV energy generation. During the pre-application meeting with Kane County zoning staff, a sight distance study was requested due to concerns of the proposed project driveway location along a curve on U.S. Highway 20.

2.0 Methodology

The sight distance study involves observing the furthest an object (i.e., an approaching vehicle approximately 2 feet above the center of the traffic lane) can be seen from the driver's eye.

Gio Del Rivero and Amanda Larsen, TRC biologists, conducted a site visit on March 22, 2023, under the supervision of Doug K. Illes, PR, MBA, TRC Senior Traffic Engineer, to complete the site distance study within the location of the proposed Project driveway area.

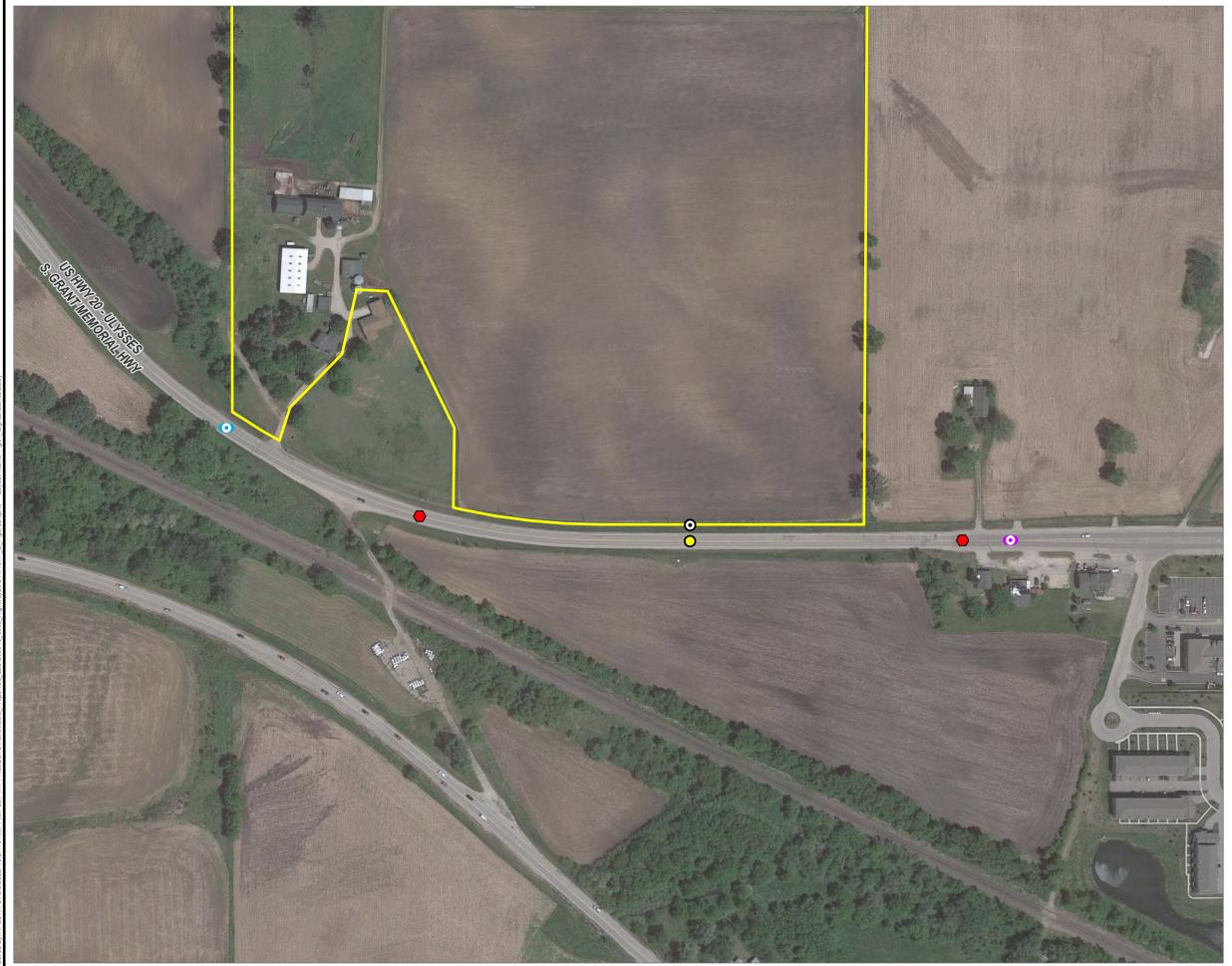
Prior to the field survey, TRC reviewed 'Table 13 – Sight Distance For Access' and 'Table 14 – Minimum Stopping Sight Distance for Access' from Section 2 of the Kane County Division of Transportation Access Permit and Access Control Regulations, dated January 1, 2004. According to these regulations, the distances listed in Table 13 shall be goals to meet or exceed when positioning an access driveway along the property frontage. Should these sight distances by physically unobtainable, the access shall be at a location that provides the sight distance closest to that required, provided that the minimum stopping sight distance, as listed in Table 14, is met or exceeded. Design speed is considered to be the posted speed limit plus 5 miles per hour.

The driver's eye was observed from 17 feet back from pavement edge and 3.5 feet above pavement edge at the proposed driveway location for the Project. The posted speed limit for U.S. Highway 20 was observed in Renewable Properties – Highway 20 Solar Driveway Sight Distance Study for Highway Access Technical Memorandum May 9, 2023 Page 2 of 4

the field to be 55 miles per hour, therefor, the design speed per Table 13/14 is 60 miles per hour. Recommended sight distance (Table 13) for this design speed is 1,125 feet and minimum stopping sight distance (Table 14) is 570 feet.

TRC utilized sub-meter accurate GPS units to map the location of the furthest sight distance from the proposed driveway location.

3.0 Survey Findings


Observed sight distance west of the proposed driveway location was found to be 1,015 feet due to the curve of U.S. Highway 20 and existing vegetation and topography. Observed sight distance east of the proposed driveway location was found to be 670 feet due to existing topography. These distances are depicted in Figure 1 in Attachment A. Representative site photographs are included in Attachment B.

4.0 Conclusions

Sight distance to the west of the proposed driveway location was found to be 110 feet less than recommended but 445 feet more than minimum stopping sight distance. Sight distance to the east of the proposed driveway location was found to be 455 feet less than recommended but 100 feet more than minimum stopping sight distance. Accordingly, we believe no further action is required and the proposed entrance location will facilitate safe access to the site during throughout the Project's life cycle.

Attachment A: Figure 1 – Sight Distance Study Attachment B: Representative Photographs ATTACHMENT A

FIGURE 1 - SITE DISTANCE STUDY

NOTES: 1. BASE MAP IMAGERY FROM GOOGLE, MAY 2021. $\widehat{\mathbb{Q}}$ Hampshire 1:2,400 1" = 200' 500 FEET 250 RENEWABLE PROPERTIES - HIGHWAY 20 KANE COUNTY, IL TITLE: SIGHT DISTANCE STUDY 500015.0005 A. FOJTIK PROJ. NO.: DRAWN BY: CHECKED BY: G. DEL RIVERO APPROVED BY: G. DEL RIVERO FIGURE 1 DATE: MAY 2023 6737 W WASHINGTON ST. SUITE 2100 WEST ALLIS, WI 53214 PHONE: 262.879.1212 TRC T E Figures.aprx

STUDY AREA

DRIVER'S EYE

 \odot

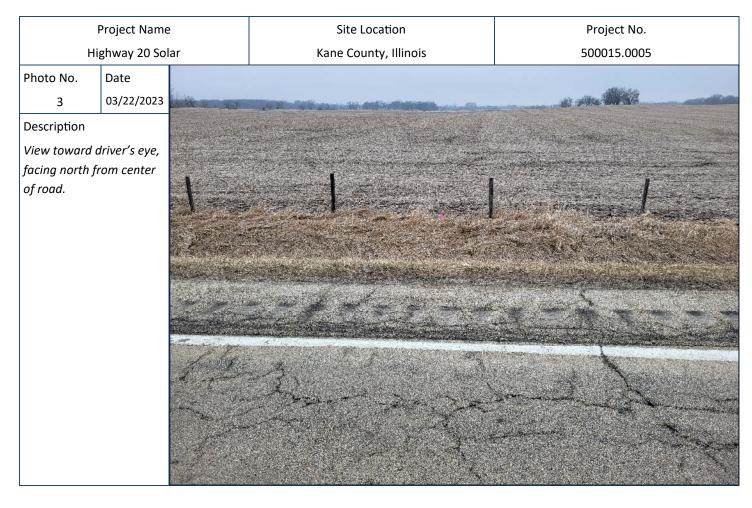
1015 FOOT SIGHT DISTANCE670 FOOT SIGHT DISTANCE

570 FOOT STOPPING DISTANCE

• PROPOSED DRIVEWAY ENTRANCE

ATTACHMENT B

REPRESENTATIVE PHOTOGRAPHS


Site Photographs

Site Photographs

230 W. Monroe Street, Suite 1840 Chicago, IL 60606

Natural Resources Survey

6737 West Washington St. Ste. 2100 West Allis, WI 53214 **T** 262.879.1212 TRCcompanies.com

Natural Resources Survey Technical Memorandum

Date:	January 20, 2023
То:	Jim Auld, Renewable Properties
From:	Laura Giese, TRC
Subject:	Kane County, IL Hwy 20 Solar Project
Project No.:	500015.0000.0005

1.0 Introduction

On behalf of Renewable Properties, TRC conducted a natural resources survey for the Kane County Illinois Hwy 20 Solar Project (Project). The Project will be located on approximately 76 acres along Hwy 20 (43W708) in Hampshire (Attachment A). The Project plans to generate roughly 5 megawatts alternating current of clean, reliable solar energy and connect to ComEd's electrical distribution system, which is located onsite.

2.0 Statement of Qualifications

Dr. Laura A.B. Giese is a Senior Biologist/Forester with over 25 years of experience working in natural resources. Her credentials include Senior Professional Wetland Scientist (#1363), Professional Wetland Delineator – VA, Lake County, Illinois Certified Wetland Specialist, Certified Forester (#801), Registered Professional Forester-MD (#364), and Certified Senior Ecologist. She has been the principal investigator on surveys including rare, threatened and endangered species; botanical and floristic quality; wetlands and streams; anuran, avian, and reptile; forestry; and other natural resource assessments.

3.0 Methodology

The natural resources survey involves traversing the parcel to evaluate the potential presence of natural areas (woodlands, significant trees, and habitat for threatened and endangered species) within the Project area.

Laura Giese, TRC biologist/forester conducted a site visit on November 28, 2022, to complete the natural resources survey within the Project area.

Although Kane County does not have specific woodland protection standards, the natural resources survey adopted standards similar to Lake County, Illinois. Woodland categories and heritage/significant trees are categorized as such based on the Lake County Ordinance:

Renewable Properties – Hwy 20 Solar Natural Resources Survey Technical Memorandum January 20, 2023 Page 2 of 4

(a) *Mature woodlands.* A mature woodland is an area or stand of trees whose total combined canopy covers an area of 20,000 square feet or more, at least 50% of which is composed of trees having a diameter breast height of 16 inches or more.

(b) *Groves.* A grove is a stand of five or more individual trees whose total combined canopy covers an area of less than 20,000 square feet, at least 50% of which is composed of trees having a diameter breast height of 16 inches or more.

(c) Young woodlands. A young woodland is an area or stand of trees whose total combined canopy covers an area of 20,000 square feet or more, at least 50% of which is composed of trees having a diameter breast height of at least three inches and less than 16 inches.

(d) *Significant/Heritage trees.* Significant trees are trees having a diameter breast height (four and one-half feet above average ground elevation) of 24/25 inches or greater for deciduous trees and 12 inches or greater for evergreen trees.

Both heritage and significant trees were GPS-located and given a condition health rating of one of the following health categories: excellent, very good, good, fair, or poor.

Undesirable or non-native tree species (i.e., noxious species) such as *Acer negundo* (box elder), *Robinia pseudoacacia* (black locust), *Rhamnus cathartica* (common buckthorn), *Rhamnus frangula* (smooth buckthorn), Ailanthus altissima (tree of heaven), *Morus alba* (white or common mulberry), *Eleagnus angustifolia* (Russian olive), *Eleagnus umbellata* (autumn olive), *Populus alba* (white poplar) and *Ulmus pumila* (Siberian elm) generally shall not require protection.

Prior to the field survey a review for federally-and state-listed threatened and endangered species that may occur within the Study Areas was conducted by reviewing the U.S. Fish and Wildlife Service (USFWS) Information for Planning and Conservation (IPaC) website (https://ecos.fws.gov/ipac/). A review for state-listed species was conducted using the Illinois Department of Natural Resources (IDNR) EcoCAT tool. The data obtained from the USFWS IPaC report and IDNR EcoCAT tool was reviewed and habitat requirements of federally- and state-listed species was considered while completing the field survey.

A map was prepared showing areas that meet a woodland category definition, heritage and significant tree location, and areas that may be considered to have suitable habitat for state or federal threatened or endangered species within the Project area.

4.0 Survey Findings

Woodlands and Significant/Heritage Trees

The Study Area is comprised of an old farmstead with multiple buildings, cattle pasture, and several large fields. Fence rows border the east and west sides, with some minor internal fencing.

Twenty-eight (28) significant/heritage trees were GPS – located and are shown on Attachment B. Species included cottonwood (*Populus deltoides*), bur oak (*Quercus macrocarpa*), white oak (*Q. alba*), shagbark hickory

Renewable Properties – Hwy 20 Solar Natural Resources Survey Technical Memorandum January 20, 2023 Page 3 of 4

(*Carya ovata*), Norway spruce (*Picea abies*), black walnut (*Juglans nigra*), white pine (*Pinus strobus*), Scots pine (*P. sylvestris*), white fir (*Abies concolor*), and Norway maple (*Acer platanoides*). The heritage/significant trees are primarily scattered along the east and west sides, with a few in the pasture. Significant/heritage trees that were close but on the other side of the fence were not included. An approximately 0.42-acre grove of primarily planted ornamental trees, which includes some heritage/significant trees, is located in the southwestern portion of the Project Area near the farmstead. Most of the significant/heritage trees were in good health with fair form. A few trees were in fair to poor health and form.

Threatened and Endangered Species Habitat

Several species that may be present within the Project area were identified from the IPaC and EcoCAT review (Attachment C). The potential for suitable habitat with the Project area is discussed below.

Potential suitable roosting habitat was present for the northern long-eared bat (*Myotis septentrionalis*) within the grove near the farmstead, and the few shagbark hickory trees along the east side (Attachment B).

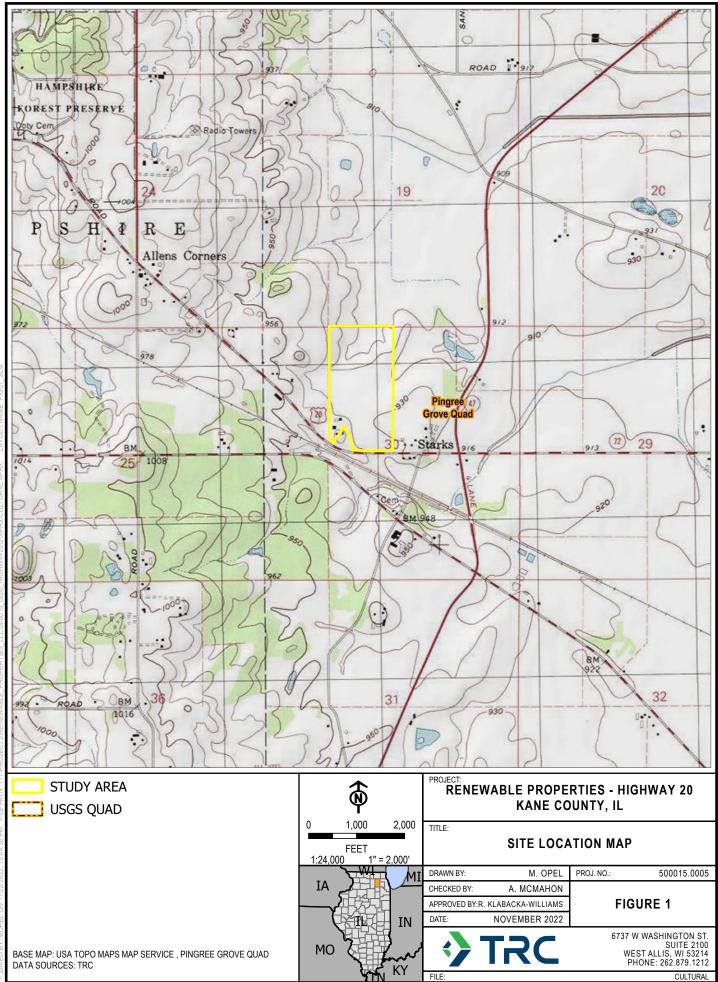
Several milkweed plants (*Asclepias syriaca*), the host plant for the Monarch butterfly (*Danaus plexippus*), were along the fenceline/field edges (Attachment B). There was no suitable habitat for the eastern prairie fringed orchid (*Platanthera leucophaea*).

Swainson's hawks (*Buteo swainsoni*) favor open habitats for foraging and have adjusted to agricultural settings. The hawk relies on scattered stands of trees near agricultural fields and grasslands for nesting sites. Suitable foraging habitat was present, but suitable nesting habitat was not. The IDNR has concluded that adverse effects are unlikely for this species as identified in the EcoCAT; therefore, consultation was terminated (Attachment C).

5.0 Conclusions

The natural resources survey identified a potential 0.42-acre grove, 28 heritage/significant trees, and potentially suitable habitat for the northern long-eared bat, monarch butterfly, and Swainson's hawk.

The proposed development plan does not involve removal of any native vegetation and entails construction in previously disturbed areas (e.g., manicured lawn, active agricultural fields, graveled, or otherwise un-vegetated areas that do not require impacts to trees). In addition, TRC has determined there are no potential impacts to surface or groundwater that could have consequences for species or critical habitats. Based on these factors, a "No Effect" determination is appropriate because the proposed development will not remove suitable habitat for any listed species and/or no habitat disturbance is anticipated. Hence, no listed species or designated critical habitat is anticipated to be directly or indirectly affected by the proposed development and consultation with the USFWS is not warranted.


Should the proposed development plan change and areas identified as potentially suitable habitat for the northern long-eared cannot be avoided, further consultation with the USFWS is recommended to

Renewable Properties – Hwy 20 Solar Natural Resources Survey Technical Memorandum January 20, 2023 Page 4 of 4

ensure adverse effects are not anticipated. Conservation of monarch butterfly habitat is not regulated or required since it is a candidate species. However, it is recommended that suitable habitat and its primary host plant, common milkweed be conserved. The IDNR has concluded adverse effects are unlikely for the Swainson's Hawk; therefore, consultation with this agency has been terminated.

Attachment A: Site Location Map Attachment B: Woodland and Potential Habitat Map Attachment C: USFWS IPaC and IDNR EcoCAT; IDNR Termination Letter Attachment D: Representative Photographs ATTACHMENT A

SITE LOCATION MAP

ATTACHMENT B

WOODLAND AND POTENTIAL HABITAT MAP

			and the
Tree ID	Species	DBH	Condition
1	Populus deltoides	40.1	Fair
2	Quercus macrocarpa	30.5	Good
3	Populus deltoides	38.9	Fair
4	Populus deltoides	45.8	Fair
5	Populus deltoides	31.3	Fair
6	Quercus macrocarpa	28.4	Poor
7	Quercus alba	25.5	Good
8	Quercus macrocarpa	31.5	Good
9	Quercus macrocarpa	52.9	Good
10	Quercus macrocarpa	29.0	Good
11	Quercus macrocarpa	24.8	Good
12	Quercus macrocarpa	37.6	Good
13	Quercus macrocarpa	40.0	Good
14	Quercus macrocarpa	47.4	Good
15	Quercus macrocarpa	36.6	Fair
16	Quercus macrocarpa	25, 26, 27	Fair
17	Carya ovata	26.1	Good
18	Quercus macrocarpa	48.2	Good
19	Picea abies	18.0	Good
20	Juglans nigra	33.0	Fair
21	Picea abies	17.1	Good
22	Pinus strobus	19.2	Good
23	Pinus sylvestris	17.8	Poor
24	Abies concolor	20.0	Good
25	Carya ovata	25.0	Fair
26	Acer platanoides	27.6	Good
27	Carya ovata	24.4	Good
28	Populus deltoides	37.90	Poor

72

 $\bigcirc 7$

17

STUDY AREA

GROVE AND BAT ROOSTING HABITAT

THERITAGE/SIGNIFICANT TREE

O MONARCH BUTTERFLY HABITAT

NOTES: 1. BASE MAP IMAGERY FROM GOOGLE, MAY 2021.

250

1" = 300'

RENEWABLE PROPERTIES - HIGHWAY 20 KANE COUNTY, IL

TITLE: WOODLANDS AND POTENTIAL HABITAT MAP

DRAWN BY:	A. FOJTIK	PROJ. NO.:	500015.0005
CHECKED BY:	L. GIESE		
APPROVED BY:	L. GIESE	FIG	URE 2
DATE:	JANUARY 2023		
♦	IRC	WES	WASHINGTON ST. SUITE 2100 ST ALLIS, WI 53214 ONE: 262.879.1212
EILE.			T E Eigures apro

ATTACHMENT C

USFWS IPaC, IDNR EcoCAT IDNR TERMINATION of CONSULTATION LETTER

IPaC resource list

This report is an automatically generated list of species and other resources such as critical habitat (collectively referred to as *trust resources*) under the U.S. Fish and Wildlife Service's (USFWS) jurisdiction that are known or expected to be on or near the project area referenced below. The list may also include trust resources that occur outside of the project area, but that could potentially be directly or indirectly affected by activities in the project area. However, determining the likelihood and extent of effects a project may have on trust resources typically requires gathering additional site-specific (e.g., vegetation/species surveys) and project-specific (e.g., magnitude and timing of proposed activities) information.

Below is a summary of the project information you provided and contact information for the USFWS office(s) with jurisdiction in the defined project area. Please read the introduction to each section that follows (Endangered Species, Migratory Birds, USFWS Facilities, and NWI Wetlands) for additional information applicable to the trust resources addressed in that section.

<image>

Local office

Chicago Ecological Service Field Office

\$ (312) 485-9337

U.s. Fish And Wildlife Service Chicago Ecological Services Office 230 South Dearborn St., Suite 2938

Chicago, IL 60604-1507

NOTFORCONSULTATION

Endangered species

This resource list is for informational purposes only and does not constitute an analysis of project level impacts.

The primary information used to generate this list is the known or expected range of each species. Additional areas of influence (AOI) for species are also considered. An AOI includes areas outside of the species range if the species could be indirectly affected by activities in that area (e.g., placing a dam upstream of a fish population even if that fish does not occur at the dam site, may indirectly impact the species by reducing or eliminating water flow downstream). Because species can move, and site conditions can change, the species on this list are not guaranteed to be found on or near the project area. To fully determine any potential effects to species, additional site-specific and project-specific information is often required.

Section 7 of the Endangered Species Act **requires** Federal agencies to "request of the Secretary information whether any species which is listed or proposed to be listed may be present in the area of such proposed action" for any project that is conducted, permitted, funded, or licensed by any Federal agency. A letter from the local office and a species list which fulfills this requirement can **only** be obtained by requesting an official species list from either the Regulatory Review section in IPaC (see directions below) or from the local field office directly.

For project evaluations that require USFWS concurrence/review, please return to the IPaC website and request an official species list by doing the following:

- 1. Draw the project location and click CONTINUE.
- 2. Click DEFINE PROJECT.
- 3. Log in (if directed to do so).
- 4. Provide a name and description for your project.
- 5. Click REQUEST SPECIES LIST.

Listed species¹ and their critical habitats are managed by the <u>Ecological Services Program</u> of the U.S. Fish and Wildlife Service (USFWS) and the fisheries division of the National Oceanic and Atmospheric Administration (NOAA Fisheries²).

Species and critical habitats under the sole responsibility of NOAA Fisheries are **not** shown on this list. Please contact <u>NOAA Fisheries</u> for <u>species under their jurisdiction</u>.

 Species listed under the <u>Endangered Species Act</u> are threatened or endangered; IPaC also shows species that are candidates, or proposed, for listing. See the <u>listing status page</u> for more information. IPaC only shows species that are regulated by USFWS (see FAQ). 2. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

The following species are potentially affected by activities in this location:

Mammals

NAME	STATUS
Northern Long-eared Bat Myotis septentrionalis Wherever found No critical habitat has been designated for this species. <u>https://ecos.fws.gov/ecp/species/9045</u>	Threatened
Insects NAME	STATUS
Monarch Butterfly Danaus plexippus Wherever found No critical habitat has been designated for this species. https://ecos.fws.gov/ecp/species/9743 Flowering Plants	Candidate
NAME	STATUS
 Eastern Prairie Fringed Orchid Platanthera leucophaea Wherever found This species only needs to be considered if the following condition applies: Follow the guidance provided at https://www.fws.gov/midwest/endangered/section7/s7pro No critical habitat has been designated for this species. <u>https://ecos.fws.gov/ecp/species/601</u> 	Threatened

Critical habitats

Potential effects to critical habitat(s) in this location must be analyzed along with the endangered species themselves.

There are no critical habitats at this location.

Migratory birds

Certain birds are protected under the Migratory Bird Treaty Act^{1} and the Bald and Golden Eagle Protection Act^{2} .

Any person or organization who plans or conducts activities that may result in impacts to migratory birds, eagles, and their habitats should follow appropriate regulations and consider implementing appropriate conservation measures, as described <u>below</u>.

- 1. The Migratory Birds Treaty Act of 1918.
- 2. The Bald and Golden Eagle Protection Act of 1940.

Additional information can be found using the following links:

- Birds of Conservation Concern https://www.fws.gov/program/migratory-birds/species
- Measures for avoiding and minimizing impacts to birds <u>https://www.fws.gov/library/collections/avoiding-and-minimizing-incidental-take-migratory-birds</u>
- Nationwide conservation measures for birds <u>https://www.fws.gov/sites/default/files/documents/nationwide-standard-conservation-measures.pdf</u>

The birds listed below are birds of particular concern either because they occur on the USFWS Birds of Conservation Concern (BCC) list or warrant special attention in your project location. To learn more about the levels of concern for birds on your list and how this list is generated, see the FAQ below. This is not a list of every bird you may find in this location, nor a guarantee that every bird on this list will be found in your project area. To see exact locations of where birders and the general public have sighted birds in and around your project area, visit the <u>E-bird data mapping tool</u> (Tip: enter your location, desired date range and a species on your list). For projects that occur off the Atlantic Coast, additional maps and models detailing the relative occurrence and abundance of bird species on your list are available. Links to additional information about Atlantic Coast birds, and other important information about your migratory bird list, including how to properly interpret and use your migratory bird report, can be found <u>below</u>.

For guidance on when to schedule activities or implement avoidance and minimization measures to reduce impacts to migratory birds on your list, click on the PROBABILITY OF PRESENCE SUMMARY at the top of your list to see when these birds are most likely to be present and breeding in your project area.

NAME

BREEDING SEASON

American Golden-plover Pluvialis dominica This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. Breeds elsewhere

Bald Eagle Haliaeetus leucocephalus This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities.	Breeds Oct 15 to Aug 31
Black-billed Cuckoo Coccyzus erythropthalmus This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. <u>https://ecos.fws.gov/ecp/species/9399</u>	Breeds May 15 to Oct 10
Bobolink Dolichonyx oryzivorus This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.	Breeds May 20 to Jul 31
Chimney Swift Chaetura pelagica This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.	Breeds Mar 15 to Aug 25
Henslow's Sparrow Ammodramus henslowii This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. <u>https://ecos.fws.gov/ecp/species/3941</u>	Breeds May 1 to Aug 31
Lesser Yellowlegs Tringa flavipes This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. <u>https://ecos.fws.gov/ecp/species/9679</u>	Breeds elsewhere
Red-headed Woodpecker Melanerpes erythrocephalus This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.	Breeds May 10 to Sep 10
Rusty Blackbird Euphagus carolinus This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions (BCRs) in the continental USA	Breeds elsewhere
Short-billed Dowitcher Limnodromus griseus This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. <u>https://ecos.fws.gov/ecp/species/9480</u>	Breeds elsewhere

Wood Thrush Hylocichla mustelina

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Probability of Presence Summary

The graphs below provide our best understanding of when birds of concern are most likely to be present in your project area. This information can be used to tailor and schedule your project activities to avoid or minimize impacts to birds. Please make sure you read and understand the FAQ "Proper Interpretation and Use of Your Migratory Bird Report" before using or attempting to interpret this report.

Probability of Presence (

Each green bar represents the bird's relative probability of presence in the 10km grid cell(s) your project overlaps during a particular week of the year. (A year is represented as 12 4-week months.) A taller bar indicates a higher probability of species presence. The survey effort (see below) can be used to establish a level of confidence in the presence score. One can have higher confidence in the presence score if the corresponding survey effort is also high.

How is the probability of presence score calculated? The calculation is done in three steps:

- 1. The probability of presence for each week is calculated as the number of survey events in the week where the species was detected divided by the total number of survey events for that week. For example, if in week 12 there were 20 survey events and the Spotted Towhee was found in 5 of them, the probability of presence of the Spotted Towhee in week 12 is 0.25.
- 2. To properly present the pattern of presence across the year, the relative probability of presence is calculated. This is the probability of presence divided by the maximum
- probability of presence across all weeks. For example, imagine the probability of presence in week 20 for the Spotted Towhee is 0.05, and that the probability of presence at week 12 (0.25) is the maximum of any week of the year. The relative probability of presence on week 12 is 0.25/0.25 = 1; at week 20 it is 0.05/0.25 = 0.2.
- 3. The relative probability of presence calculated in the previous step undergoes a statistical conversion so that all possible values fall between 0 and 10, inclusive. This is the probability of presence score.

To see a bar's probability of presence score, simply hover your mouse cursor over the bar.

Breeding Season (=)

Yellow bars denote a very liberal estimate of the time-frame inside which the bird breeds across its entire range. If there are no yellow bars shown for a bird, it does not breed in your project area.

Survey Effort (|)

Vertical black lines superimposed on probability of presence bars indicate the number of surveys performed for that species in the 10km grid cell(s) your project area overlaps. The number of surveys is expressed as a range, for example, 33 to 64 surveys.

To see a bar's survey effort range, simply hover your mouse cursor over the bar.

No Data (–)

A week is marked as having no data if there were no survey events for that week.

Survey Timeframe

Surveys from only the last 10 years are used in order to ensure delivery of currently relevant information. The exception to this is areas off the Atlantic coast, where bird returns are based on all years of available data, since data in these areas is currently much more sparse.

			■ pr	obabilit	y of pre	sence	breed	ding sea	son	survey effort	— no data
SPECIES	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT NOV	DEC
American Golden-plover BCC Rangewide (CON)		++++	++++	++++	+∎++	++++	++++	++++	++	+++++++++	+ ++++
Bald Eagle Non-BCC Vulnerable	+++	++∎+	+++	++11	++++	++++		++++	+++	+ ++++ +1+	+ 1+++
Black-billed Cuckoo BCC Rangewide (CON)	++++	++++	++++	++++	+) ++1	++++	++++	+++	+ +++++++++++++++++++++++++++++++++++++	+ ++++
Bobolink BCC Rangewide (CON)	++++	+ +++	++++	++++		111 +	11+1	1++1	+++	+ ++++ +++	+ ++++
Chimney Swift BCC Rangewide (CON)	++++	++++	+ <mark>+</mark> ++	+++1	<u> </u> + <u> </u>	1111	+] +]	1+11	+ +	+ ++++ +++	+ ++++
Henslow's Sparrow BCC Rangewide (CON)		++++	++++	++++	∎+∎+	++++	++++	I +++	+++	+ ++++ +++	+ ++++
Lesser Yellowlegs BCC Rangewide (CON)		++++	++++	Ⅱ + Ⅱ +	 + 	++++	+	++++	1 +	+ ++	+ ++++
Red-headed Woodpecker BCC Rangewide (CON)	++++	++++	++++	+++∎	↓ <u> </u> ++	++++	++++	++1+	+++	+ + ++ +++	+ ++++
Rusty Blackbird BCC - BCR	++++	++++		.	₩+++	++++	++++	++++	+++	+ ++++ + #+	+ ++++

÷

Short-billed	++++	++++	++++	++++	■ +++	++++	++++	++++	++++	++++	++++	++++
Dowitcher	1											
BCC Rangewide												
(CON)												
						_		_				
Wood Thrush	++++	++++	++++	++++	111	TTT+	1 1 + 1	++++	+ 1 1 +	++++	++++	++++
BCC Rangewide												
(CON)												

Tell me more about conservation measures I can implement to avoid or minimize impacts to migratory birds.

<u>Nationwide Conservation Measures</u> describes measures that can help avoid and minimize impacts to all birds at any location year round. Implementation of these measures is particularly important when birds are most likely to occur in the project area. When birds may be breeding in the area, identifying the locations of any active nests and avoiding their destruction is a very helpful impact minimization measure. To see when birds are most likely to occur and be breeding in your project area, view the Probability of Presence Summary. <u>Additional measures</u> or <u>permits</u> may be advisable depending on the type of activity you are conducting and the type of infrastructure or bird species present on your project site.

What does IPaC use to generate the list of migratory birds that potentially occur in my specified location?

The Migratory Bird Resource List is comprised of USFWS <u>Birds of Conservation Concern (BCC)</u> and other species that may warrant special attention in your project location.

The migratory bird list generated for your project is derived from data provided by the <u>Avian Knowledge</u> <u>Network (AKN)</u>. The AKN data is based on a growing collection of <u>survey</u>, <u>banding</u>, <u>and citizen science</u> <u>datasets</u> and is queried and filtered to return a list of those birds reported as occurring in the 10km grid cell(s) which your project intersects, and that have been identified as warranting special attention because they are a BCC species in that area, an eagle (<u>Eagle Act</u> requirements may apply), or a species that has a particular vulnerability to offshore activities or development.

Again, the Migratory Bird Resource list includes only a subset of birds that may occur in your project area. It is not representative of all birds that may occur in your project area. To get a list of all birds potentially present in your project area, please visit the <u>Rapid Avian Information Locator (RAIL) Tool</u>.

What does IPaC use to generate the probability of presence graphs for the migratory birds potentially occurring in my specified location?

The probability of presence graphs associated with your migratory bird list are based on data provided by the <u>Avian Knowledge Network (AKN)</u>. This data is derived from a growing collection of <u>survey</u>, <u>banding</u>, <u>and</u> <u>citizen science datasets</u>.

Probability of presence data is continuously being updated as new and better information becomes available. To learn more about how the probability of presence graphs are produced and how to interpret them, go the Probability of Presence Summary and then click on the "Tell me about these graphs" link.

How do I know if a bird is breeding, wintering or migrating in my area?

To see what part of a particular bird's range your project area falls within (i.e. breeding, wintering, migrating or year-round), you may query your location using the <u>RAIL Tool</u> and look at the range maps provided for birds in your area at the bottom of the profiles provided for each bird in your results. If a bird on your migratory bird species list has a breeding season associated with it, if that bird does occur in your project area, there may be nests present at some point within the timeframe specified. If "Breeds elsewhere" is indicated, then the bird likely does not breed in your project area.

What are the levels of concern for migratory birds?

Migratory birds delivered through IPaC fall into the following distinct categories of concern:

- 1. "BCC Rangewide" birds are <u>Birds of Conservation Concern</u> (BCC) that are of concern throughout their range anywhere within the USA (including Hawaii, the Pacific Islands, Puerto Rico, and the Virgin Islands);
- 2. "BCC BCR" birds are BCCs that are of concern only in particular Bird Conservation Regions (BCRs) in the continental USA; and
- 3. "Non-BCC Vulnerable" birds are not BCC species in your project area, but appear on your list either because of the <u>Eagle Act</u> requirements (for eagles) or (for non-eagles) potential susceptibilities in offshore areas from certain types of development or activities (e.g. offshore energy development or longline fishing).

Although it is important to try to avoid and minimize impacts to all birds, efforts should be made, in particular, to avoid and minimize impacts to the birds on this list, especially eagles and BCC species of rangewide concern. For more information on conservation measures you can implement to help avoid and minimize migratory bird impacts and requirements for eagles, please see the FAQs for these topics.

Details about birds that are potentially affected by offshore projects

For additional details about the relative occurrence and abundance of both individual bird species and groups of bird species within your project area off the Atlantic Coast, please visit the <u>Northeast Ocean Data</u> <u>Portal</u>. The Portal also offers data and information about other taxa besides birds that may be helpful to you in your project review. Alternately, you may download the bird model results files underlying the portal maps through the <u>NOAA NCCOS Integrative Statistical Modeling and Predictive Mapping of Marine Bird</u> <u>Distributions and Abundance on the Atlantic Outer Continental Shelf</u> project webpage.

Bird tracking data can also provide additional details about occurrence and habitat use throughout the year, including migration. Models relying on survey data may not include this information. For additional information on marine bird tracking data, see the <u>Diving Bird Study</u> and the <u>nanotag studies</u> or contact <u>Caleb Spiegel</u> or <u>Pam Loring</u>.

What if I have eagles on my list?

If your project has the potential to disturb or kill eagles, you may need to <u>obtain a permit</u> to avoid violating the Eagle Act should such impacts occur.

Proper Interpretation and Use of Your Migratory Bird Report

The migratory bird list generated is not a list of all birds in your project area, only a subset of birds of priority concern. To learn more about how your list is generated, and see options for identifying what other birds may be in your project area, please see the FAQ "What does IPaC use to generate the migratory

IPaC: Explore Location resources

birds potentially occurring in my specified location". Please be aware this report provides the "probability of presence" of birds within the 10 km grid cell(s) that overlap your project; not your exact project footprint. On the graphs provided, please also look carefully at the survey effort (indicated by the black vertical bar) and for the existence of the "no data" indicator (a red horizontal bar). A high survey effort is the key component. If the survey effort is high, then the probability of presence score can be viewed as more dependable. In contrast, a low survey effort bar or no data bar means a lack of data and, therefore, a lack of certainty about presence of the species. This list is not perfect; it is simply a starting point for identifying what birds of concern have the potential to be in your project area, when they might be there, and if they might be breeding (which means nests might be present). The list helps you know what to look for to confirm presence, and helps guide you in knowing when to implement conservation measures to avoid or minimize potential impacts from your project activities, should presence be confirmed. To learn more about conservation measures, visit the FAQ "Tell me about conservation measures I can implement to avoid or minimize impacts to migratory birds" at the bottom of your migratory bird trust resources page.

Coastal Barrier Resources System

Projects within the John H. Chafee Coastal Barrier Resources System (CBRS) may be subject to the restrictions on Federal expenditures and financial assistance and the consultation requirements of the Coastal Barrier Resources Act (CBRA) (16 U.S.C. 3501 et seq.). For more information, please contact the local Ecological Services Field Office or visit the CBRA Consultations website. The CBRA website provides tools such as a flow chart to help determine whether consultation is required and a template to facilitate the consultation process.

There are no known coastal barriers at this location.

Data limitations

The CBRS boundaries used in IPaC are representations of the controlling boundaries, which are depicted on the <u>official CBRS maps</u>. The boundaries depicted in this layer are not to be considered authoritative for in/out determinations close to a CBRS boundary (i.e., within the "CBRS Buffer Zone" that appears as a hatched area on either side of the boundary). For projects that are very close to a CBRS boundary but do not clearly intersect a unit, you may contact the Service for an official determination by following the instructions here: <u>https://www.fws.gov/service/coastal-barrier-resources-system-property-documentation</u>

Data exclusions

CBRS units extend seaward out to either the 20- or 30-foot bathymetric contour (depending on the location of the unit). The true seaward extent of the units is not shown in the CBRS data, therefore projects in the offshore areas of units (e.g., dredging, breakwaters, offshore wind energy or oil and gas projects) may be subject to CBRA even if they do not intersect the CBRS data. For additional information, please contact <u>CBRA@fws.gov</u>.

Facilities

National Wildlife Refuge lands

Any activity proposed on lands managed by the <u>National Wildlife Refuge</u> system must undergo a 'Compatibility Determination' conducted by the Refuge. Please contact the individual Refuges to discuss any questions or concerns.

There are no refuge lands at this location.

Fish hatcheries

There are no fish hatcheries at this location.

Wetlands in the National Wetlands Inventory (NWI)

Impacts to <u>NWI wetlands</u> and other aquatic habitats may be subject to regulation under Section 404 of the Clean Water Act, or other State/Federal statutes.

For more information please contact the Regulatory Program of the local <u>U.S. Army Corps of</u> <u>Engineers District</u>.

Wetland information is not available at this time

This can happen when the National Wetlands Inventory (NWI) map service is unavailable, or for very large projects that intersect many wetland areas. Try again, or visit the <u>NWI map</u> to view wetlands at this location.

Data limitations

The Service's objective of mapping wetlands and deepwater habitats is to produce reconnaissance level information on the location, type and size of these resources. The maps are prepared from the analysis of high altitude imagery. Wetlands are identified based on vegetation, visible hydrology and geography. A margin of error is inherent in the use of imagery; thus, detailed on-the-ground inspection of any particular site may result in revision of the wetland boundaries or classification established through image analysis.

The accuracy of image interpretation depends on the quality of the imagery, the experience of the image analysts, the amount and quality of the collateral data and the amount of ground truth verification work conducted. Metadata should be consulted to determine the date of the source imagery used and any mapping problems.

Wetlands or other mapped features may have changed since the date of the imagery or field work. There may be occasional differences in polygon boundaries or classifications between the information depicted on the map and the actual conditions on site.

Data exclusions

Certain wetland habitats are excluded from the National mapping program because of the limitations of aerial imagery as the primary data source used to detect wetlands. These habitats include seagrasses or submerged aquatic vegetation that are found in the intertidal and subtidal zones of estuaries and nearshore coastal waters. Some deepwater reef communities (coral or tuberficid worm reefs) have also been excluded from the inventory. These habitats, because of their depth, go undetected by aerial imagery.

Data precautions

STEL

Federal, state, and local regulatory agencies with jurisdiction over wetlands may define and describe wetlands in a different manner than that used in this inventory. There is no attempt, in either the design or products of this inventory, to define the limits of proprietary jurisdiction of any Federal, state, or local government or to establish the geographical scope of the regulatory programs of government agencies. Persons intending to engage in activities involving modifications within or adjacent to wetland areas should seek the advice of appropriate Federal, state, or local agencies concerning specified agency regulatory programs and proprietary jurisdictions that may affect such activities.

Applicant:TRCContact:Gio Del RiveroAddress:230 Monroe StreetSuite 1840Chicago, IL 60606

IDNR Project Number: 2306854 Date: 11/21/2022

Project:Highway 20Address:43W708 U.S. Highway 20, Hampshire

Description: Proposed solar energy project with plans to generate 5MW (AC) of clean, reliable solar energy and connect to ComEd's electrical distribution system that's located onsite.

Natural Resource Review Results

Consultation for Endangered Species Protection and Natural Areas Preservation (Part 1075)

The Illinois Natural Heritage Database shows the following protected resources may be in the vicinity of the project location:

Swainson's Hawk (Buteo swainsoni)

An IDNR staff member will evaluate this information and contact you to request additional information or to terminate consultation if adverse effects are unlikely.

Location

The applicant is responsible for the accuracy of the location submitted for the project.

County: Kane

Township, Range, Section: 42N, 7E, 19 42N, 7E, 30

IL Department of Natural Resources Contact Adam Rawe 217-785-5500 Division of Ecosystems & Environment

Government Jurisdiction IL Environmental Protection Agency Division of Water Pollution Control P.O. Box 19276 Springfield, Illinois 62794

Disclaimer

The Illinois Natural Heritage Database cannot provide a conclusive statement on the presence, absence, or condition of natural resources in Illinois. This review reflects the information existing in the Database at the time of this inquiry, and should not be regarded as a final statement on the site being considered, nor should it be a substitute for detailed site surveys or field surveys required for environmental assessments. If additional protected resources are encountered during the project's implementation, compliance with applicable statutes and regulations is required.

Terms of Use

By using this website, you acknowledge that you have read and agree to these terms. These terms may be revised by IDNR as necessary. If you continue to use the EcoCAT application after we post changes to these terms, it will mean that you accept such changes. If at any time you do not accept the Terms of Use, you may not continue to use the website.

1. The IDNR EcoCAT website was developed so that units of local government, state agencies and the public could request information or begin natural resource consultations on-line for the Illinois Endangered Species Protection Act, Illinois Natural Areas Preservation Act, and Illinois Interagency Wetland Policy Act. EcoCAT uses databases, Geographic Information System mapping, and a set of programmed decision rules to determine if proposed actions are in the vicinity of protected natural resources. By indicating your agreement to the Terms of Use for this application, you warrant that you will not use this web site for any other purpose.

2. Unauthorized attempts to upload, download, or change information on this website are strictly prohibited and may be punishable under the Computer Fraud and Abuse Act of 1986 and/or the National Information Infrastructure Protection Act.

3. IDNR reserves the right to enhance, modify, alter, or suspend the website at any time without notice, or to terminate or restrict access.

Security

EcoCAT operates on a state of Illinois computer system. We may use software to monitor traffic and to identify unauthorized attempts to upload, download, or change information, to cause harm or otherwise to damage this site. Unauthorized attempts to upload, download, or change information on this server is strictly prohibited by law.

Unauthorized use, tampering with or modification of this system, including supporting hardware or software, may subject the violator to criminal and civil penalties. In the event of unauthorized intrusion, all relevant information regarding possible violation of law may be provided to law enforcement officials.

Privacy

EcoCAT generates a public record subject to disclosure under the Freedom of Information Act. Otherwise, IDNR uses the information submitted to EcoCAT solely for internal tracking purposes.

Illinois Department of Natural Resources

One Natural Resources Way Springfield, Illinois 62702-1271 http://dnr.state.il.us

JB Pritzker, Governor

Colleen Callahan, Director

November 22, 2022

Gio Del Rivero TRC 230 Monroe Street Suite 1840 Chicago, IL 60606

RE: Highway 20 Project Number(s): 2306854 **County: Kane**

Dear Applicant:

This letter is in reference to the project you recently submitted for consultation. The natural resource review provided by EcoCAT identified protected resources that may be in the vicinity of the proposed action. The Department has evaluated this information and concluded that adverse effects are unlikely. Therefore, consultation under 17 Ill. Adm. Code Part 1075 is terminated.

This consultation is valid for two years unless new information becomes available that was not previously considered; the proposed action is modified; or additional species, essential habitat, or Natural Areas are identified in the vicinity. If the project has not been implemented within two years of the date of this letter, or any of the above listed conditions develop, a new consultation is necessary.

The natural resource review reflects the information existing in the Illinois Natural Heritage Database at the time of the project submittal, and should not be regarded as a final statement on the site being considered, nor should it be a substitute for detailed site surveys or field surveys required for environmental assessments. If additional protected resources are encountered during the project's implementation, you must comply with the applicable statutes and regulations. Also, note that termination does not imply IDNR's authorization or endorsement of the proposed action.

Please contact me if you have questions regarding this review.

Colum K

Adam Rawe Division of Ecosystems and Environment 217-785-5500

ATTACHMENT D

REPRESENTATIVE PHOTOGRAPHS

Project Name			Site Location	Project No.			
Hwy 20 Solar			US Hwy 20, Hampshire, K	US Hwy 20, Hampshire, Kane County, IL			5
Photo No.	Date						
1	Nov. 2022						
Description							
Overview of th							
tural field from central portion Project Area							
Facing north.							
		TEL					
		AT AN					

Project Name			Site Location	Project No.		
	Hwy 20 Solar		US Hwy 20, Hampshire, Kane County, IL	500015.0000.0005		
Photo No.	Date					
3	Nov. 2022			100		
Description						
Overview of t tural field from	m the north-			15 10 10 10 10 10 10 10 10 10 10 10 10 10		
eastern portio			and the second s			
Project Area Facing southwest.						

Photo No.	Date			
4	Nov. 2022			
Description				
Overview of the agricul-				
tural field from the east-				
central portion of the				
Project Area				

Facing west/southwest.

F	Project Name	Site Location	Project No.		
	Hwy 20 Solar	US Hwy 20, Hampshire, Kane County, IL	500015.0000.0005		
Photo No. 5	Date Nov. 2022	Z			
Description View of the bo ture and barn southwestern the Project Ard Facing south.	ovine pas- near the portion of				

Photo No.	Date	
6	Nov. 2022	
Description		
Typical fence natural veget common milk occasionally	ation where weed was	
Facing south.		

	Project Name	Site Location	Project No.		
	Hwy 20 Solar	US Hwy 20, Hampshire, Kane County, IL	500015.0000.0005		
Photo No.	Date				
7	Nov. 2022				
Description					
Grove of mix	ed hard-				
wood and pla	anted orna-				
mental conif	erous trees				
located in the	e southwest-				
ern portion c	of the Project				
Area.					
Facing north	west.				
	and the state of the				
	The second				
			and the second second		

Photo No. Date 8 Nov. 2022 Description Small pocket of eastern red cedar trees in the southwestern ortion of the Project Arran Facing north/orthwest.

230 W. Monroe Street, Suite 1840 Chicago, IL 60606

AIMA Application

Del Rivero, Giovani

From:	Del Rivero, Giovani
Sent:	Thursday, June 15, 2023 5:42 PM
То:	AGR.AIMA@illinois.gov
Cc:	Jeremy Price
Subject:	Request for Agricultural Site Review for Solar Project Highway 20
Attachments:	AIMA Application.pdf

Good afternoon,

Please see attached Solar Agricultural Site Review Form for our Highway 20 project in Kane County. Please let me know if you have any questions or require addition information during the review process. Thank you,

Gio Del Rivero

Project Manager - Planning, Permitting, & Licensing

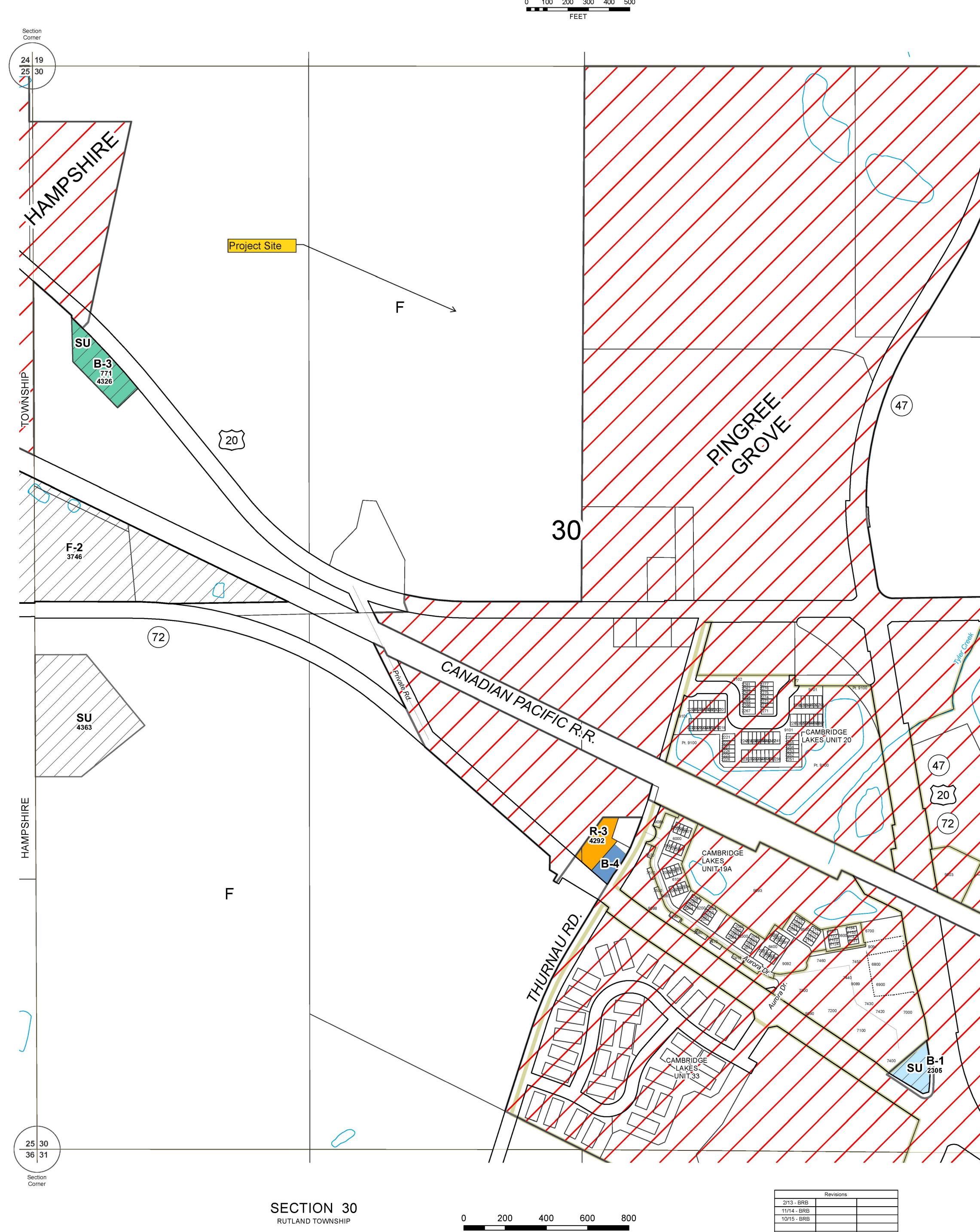
230 W. Monroe Street, Suite 1840, Chicago, IL 60606 T 773.828.6788 | C 630.370.0017 | gdelrivero@trccompanies.com LinkedIn | Twitter | TRCcompanies.com

Illinois Department of Agriculture AGRICULTURAL SITE - REVIEW INFORMATION

For Solar Projects Requesting Agricultural Impact Mitigation Agreements

Return to: Illinois Department of Agriculture Bureau of Land and Water Resources Phone 217-782-6297 Email <u>AGR.AIMA@illinois.gov</u>

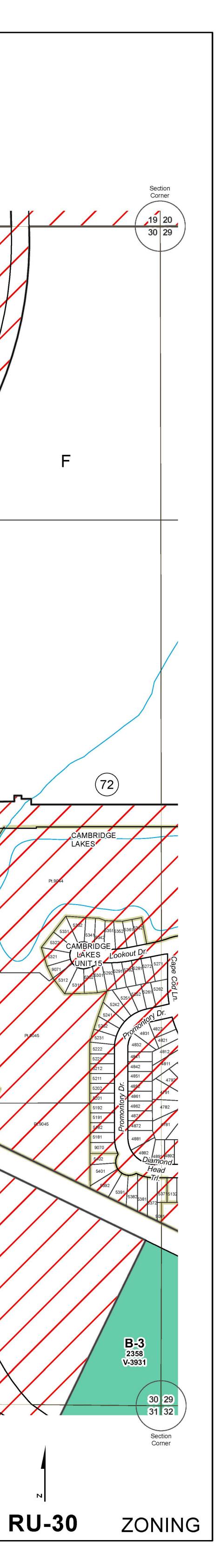
Complete this Agricultural Site Review Information sheet and attach to each Solar Agricultural Impact Mitigation Agreement being submitted. Be sure to include an aerial location map delineating the site in relation to the city/village's corporate boundaries. <u>Email</u> all information to <u>AGR.AIMA@illinois.gov</u>


Date Submitted <u>6/15/2023</u>		
APPLICANT RPIL Solar 5, LLC	_ County	Kane
Contact Person Jeremy Price	_	(978) 382-1751
Email jprice@renewprop.com		

List the project's contact person in the event that additional information is required. It is preferable to list the project's consultant and/or engineer since they usually possess the more detailed information needed to complete our review. The IDOA has a <u>30-day review period</u> in which to provide comments to the applicant once all pertinent information has been received.

Address 43W708W U.S. Highway 20

	City Hampshire ZIP 60140
1.	Number of acres in the site 25 TWP <u>42N</u> Range <u>7E</u> Section <u>30</u>
2.	Will the site me converted from an agricultural to a non-agricultural use? \mathbf{X} Yes \Box No
3.	Site is located within municipality's corporate boundaries 🛛 🗆 Yes 🕅 No
4.	Distance of site to nearest incorporated municipal boundaries <u>adjacent</u> miles (specify to nearest tenth-mile)
	LAND USE
5.	List the number of acres for each land use. Cropland ²⁵ ac Pasture <u>ac</u> Forest <u>ac</u> Other <u>ac</u> If <i>Other,</i> specify land use and land cover
6. 7.	County Permit issued? Yes No Will other state or federal funds be used for this project? I Yes No If YES, list the name(s) of participating agencies: 1)

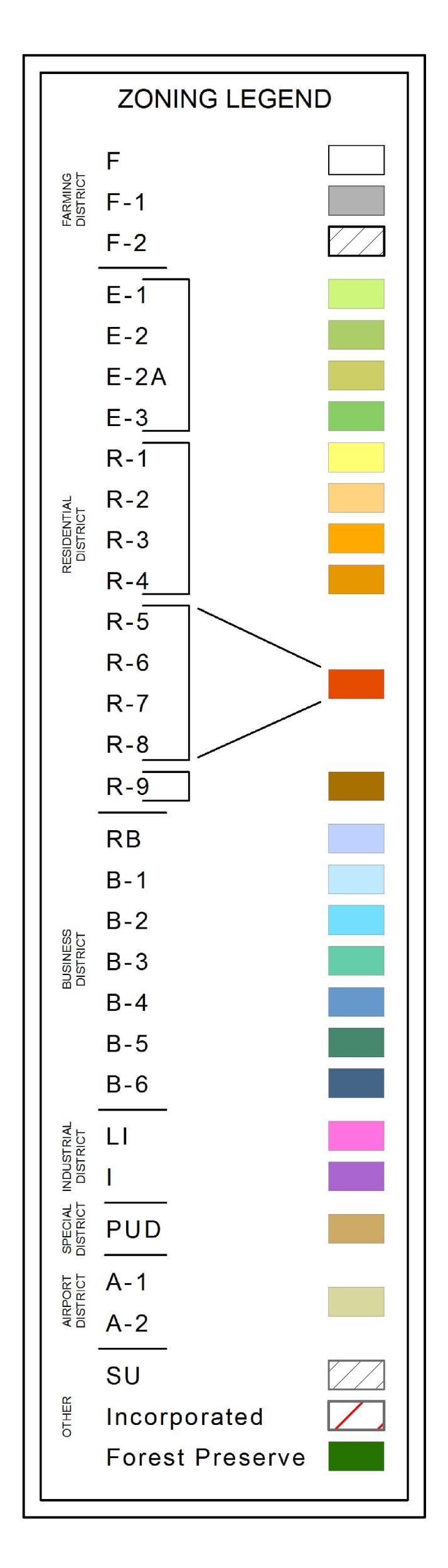


Feet

ZONING MAPS of KANE COUNTY, ILLINOIS MAP NO. RU-30 MAP SCALE 0 100 200 300 400 500

Base data current as of February 28, 2019.

Digital Zoning Maps created September 9, 2003 (TMV, TJM)


Kane County, Illinois

Building and Zoning Division

Mark D. Vankerkhoff, AIA **Zoning Enforcing Officer**

> Kane County **Government Center** 719 S. Batavia Ave. Bldg. A, 4th Floor Geneva, IL 60134

Phone: 630.232.3492

